Wake Forest University WADE Into Research REU **Intersecting Finite Sets of Positive Definite** HARVEY Integral Binary Quadratic Forms COLLEGE Havi Ellers

Introduction and Definitions

It is well know what integers can be written in the form $x^2 + y^2$ for $x, y \in \mathbb{Z}$, but what if we add x^2 and y^2 coefficients? What if we add a cross term? Our research this summer explored these possibilities.

Definition 7. *Let* $a, b \in \mathbb{Z}$ and $a \not\equiv 0 \pmod{b}$. Then a is a quadratic *residue* modulo b if there is a solution to the equation $a \equiv x^2 \pmod{b}$ for $x \in \mathbb{Z}$, and a is a *quadratic non-residue* modulo b if there is no solution.

The Forms

Definition 1. An *integral binary quadratic form* is a homogeneous polynomial

 $Q:\mathbb{Z}^2\to\mathbb{Z}$ $(x, y) \mapsto ax^2 + bxy + cy^2$ where $a, b, c \in \mathbb{Z}$. *Q* is *positive-definite* if Q(x, y) > 0 for all $(x,y) \neq (0,0)$, primitive if gcd(a,b,c) = 1, and reduced if $(R1) |b| \le a \le c,$ (R2) $b \ge 0$ if |b| = a or if a = c.

Definition 2. An integer m is represented by Q if there exist $x, y \in \mathbb{Z}$ such that Q(x, y) = m.

Definition 3. The discriminant of Q is $\Delta = b^2 - 4ac$, and is fundamental if

(*i*) $\Delta \equiv 1 \pmod{4}$ is square free, or (*ii*) $\Delta = 4n$, with $n \equiv 2, 3 \pmod{4}$ square free.

Henceforth, by "form" we mean primitive positive-definite integral binary quadratic form.

Note: there are finitely many reduced forms of a fixed discriminant, and the discriminant of a positive-definite form is negative. **Definition 4.** *The class number*, $h(\Delta)$, *is the number of reduced forms of* discriminant Δ .

Theorem (DEOTW) 1. Let $\Delta < 0$ and let S_{Δ} be the collection of all forms of discriminant Δ . If $h(\Delta)$ is odd then there are infinitely-many positive integers represented by all forms in S_{Δ} .

Theorem (DEOTW) 2. Let $\Delta < 0$ be a fundamental discriminant, and let S_{Δ} be the set of all forms of discriminant Δ . If $h(\Delta)$ is even, then m = 0 is the only integer represented by all forms in S_{Δ} .

Ask me about the Hilbert class field!!

Proofs

Proof. (of Theorem 1) Since $h(\Delta)$ is odd, $C(\Delta)$ has the following structure: $Q_1(x,y) = x^2 + b_0 xy + c_0 y^2$ $Q_2(x, y) = a_1 x^2 + b_1 x y + c_1 y^2$ $Q_3(x,y) = a_1 x^2 - b_1 x y + c_1 y^2$ $Q_{2n}(x,y) = a_n x^2 + b_n xy + c_n y^2$

The Equivalence Relation

There is an equivalence relation between forms of the same discriminant, which is defined using a \mathbb{Z} -linear matrix transformation. **Definition 5.** Equivalence is **proper** if the determinant of this matrix is 1, and *improper if the determinant is -1. Two forms are in the same proper equivalence class if they are properly equivalent.*

Fact: Properly or improperly equivalent forms represent exactly the same integers (see [1] for details).

The Group

Proper equivalence classes partition the set of forms of a fixed discriminant and create a group:

equivalence classes, and has order $h(\Delta)$.

Definition 6. *The form class group,* $C(\Delta)$ *, is the set of these proper*

 $Q_{2n+1}(x,y) = a_n x^2 - b_n xy + c_n y^2.$

Using this structure we can create compositions to show that each form represents $\prod_{i=1}^{2n+1} a_i c_i$. Also, if a form represents an integer *m* then it represents k^2m for all $k \in \mathbb{Z}$. Thus all integers in the infinite set $\left\{k^2\left(\prod_{i=1}^{2n+1}a_ic_i\right)\right\}$ are represented by all forms of discriminant Δ .

Proof. (of Theorem 2)

We are guaranteed a reduced form, Q_1 , that represents only quadratic residues and integers that are zero modulo Δ , and a reduced form, Q_2 , that represents only quadratic non-residues and integers that are zero modulo Δ . Any integer $m \equiv 0 \pmod{\Delta}$ can be written in the form $m = \Delta^k \ell$ for some $k, \ell \in \mathbb{Z}$ such that $\ell \neq 0 \pmod{\Delta}$ or $\ell = 0$. We can show that if *m* is represented by Q_1 and Q_2 then so is ℓ . This forces ℓ to be zero, since the only integers represented by both Q_1 and Q_2 are zero modulo Δ .

For Further Information

1. My email address: hellers@g.hmc.edu

2. Link to our paper on arXiv: https://arxiv.org/pdf/1708.04877.pdf

Each proper equivalence class has a unique reduced form, so we define the group operation of the form class group to be the **composition** of reduced forms (see [1] for a definition of composition). The composition of forms Q_1 and Q_2 is denoted as $Q_1 \circ Q_2$. **Fact:** If n_1 and n_2 are represented by Q_1 and Q_2 , respectively, then n_1n_2 is represented by $Q_1 \circ Q_2$. The inverse of a reduced form $Q(x, y) = ax^2 + bxy + cy^2$ is $Q^{-1}(x,y) = ax^2 - bxy + cy^2$, and the identity element of the class group, the **principal form**, is the unique reduced form that represents 1. **Note:** A nice formula can be found for the principle form (see [1]).

3. Reference [1]: D.A. Cox, Primes of the form $x^2 + ny^2$: Fermat, class field theory, and complex multiplication, Vol. 34, John Wiley & Sons, 2011.

Acknowledgements

I would like to thank the National Science Foundation for funding the WADE Into Research REU (DMS-1461189), Professor Katherine Thompson and Jeremy Rouse for mentoring me over the summer, and my fellow research team members: Chris Donnay, Kate O'Connor, and Erin Wood. Thank you also to Claire Connelly for providing this poster format.

Advisor: Katherine Thompson