Introduction and Definitions

It is well know what integers can be written in the form $x^{2}+y^{2}$ for $x, y \in \mathbb{Z}$, but what if we add x^{2} and y^{2} coefficients? What if we add a cross term? Our research this summer explored these possibilities.

The Forms

Definition 1. An integral binary quadratic form is a homogeneous polynomial

$$
\begin{aligned}
Q: \mathbb{Z}^{2} & \rightarrow \mathbb{Z} \\
(x, y) & \mapsto a x^{2}+b x y+c y^{2}
\end{aligned}
$$

where $a, b, c \in \mathbb{Z}$. Q is positive-definite if $Q(x, y)>0$ for all $(x, y) \neq(0,0)$, primitive if $\operatorname{gcd}(a, b, c)=1$, and reduced if

$$
\begin{aligned}
& \text { (R1) }|b| \leq a \leq c, \\
& \text { (R2) } b \geq 0 \text { if }|b|=\text { aor if } a=c .
\end{aligned}
$$

Definition 2. An integer m is represented by Q if there exist $x, y \in \mathbb{Z}$ such that $Q(x, y)=m$.
Definition 3. The discriminant of Q is $\Delta=b^{2}-4 a c$, and is fundamental if
(i) $\Delta \equiv 1(\bmod 4)$ is square free, or
(ii) $\Delta=4 n$, with $n \equiv 2,3(\bmod 4)$ square free.

Henceforth, by "form" we mean primitive positive-definite integral binary quadratic form.
Note: there are finitely many reduced forms of a fixed discriminant, and the discriminant of a positive-definite form is negative.
Definition 4. The class number, $h(\Delta)$, is the number of reduced forms of discriminant Δ.

The Equivalence Relation

There is an equivalence relation between forms of the same discriminant, which is defined using a \mathbb{Z}-linear matrix transformation. Definition 5. Equivalence is proper if the determinant of this matrix is 1 , and improper if the determinant is -1 . Two forms are in the same proper equivalence class if they are properly equivalent.
Fact: Properly or improperly equivalent forms represent exactly the same integers (see [1] for details).

The Group

Proper equivalence classes partition the set of forms of a fixed discriminant and create a group:
Definition 6. The form class group, $C(\Delta)$, is the set of these proper equivalence classes, and has order $h(\Delta)$.
Each proper equivalence class has a unique reduced form, so we define the group operation of the form class group to be the composition of reduced forms (see [1] for a definition of composition). The composition of forms Q_{1} and Q_{2} is denoted as $Q_{1} \circ Q_{2}$.
Fact: If n_{1} and n_{2} are represented by Q_{1} and Q_{2}, respectively, then $n_{1} n_{2}$ is represented by $Q_{1} \circ Q_{2}$.
The inverse of a reduced form $Q(x, y)=a x^{2}+b x y+c y^{2}$ is $Q^{-1}(x, y)=a x^{2}-b x y+c y^{2}$, and the identity element of the class group, the principal form, is the unique reduced form that represents 1 . Note: A nice formula can be found for the principle form (see [1]).

Definition 7.Let $a, b \in \mathbb{Z}$ and $a \not \equiv 0(\bmod b)$. Then a is a quadratic residue modulo b if there is a solution to the equation $a \equiv x^{2}(\bmod b)$ for $x \in \mathbb{Z}$, and a is a quadratic non-residue modulo b if there is no solution.

Results

Theorem (DEOTW) 1. Let $\Delta<0$ and let S_{Δ} be the collection of all forms of discriminant Δ. If $h(\Delta)$ is odd then there are infinitely-many positive integers represented by all forms in S_{Δ}.
Theorem (DEOTW) 2. Let $\Delta<0$ be a fundamental discriminant, and let S_{Δ} be the set of all forms of discriminant Δ. If $h(\Delta)$ is even, then $m=0$ is the only integer represented by all forms in S_{Δ}.
Ask me about the Hilbert class field!!

Proofs

Proof. (of Theorem 1)
Since $h(\Delta)$ is odd, $C(\Delta)$ has the following structure:

$$
\begin{aligned}
Q_{1}(x, y) & =x^{2}+b_{0} x y+c_{0} y^{2} \\
Q_{2}(x, y) & =a_{1} x^{2}+b_{1} x y+c_{1} y^{2} \\
Q_{3}(x, y) & =a_{1} x^{2}-b_{1} x y+c_{1} y^{2} \\
\vdots & \\
Q_{2 n}(x, y) & =a_{n} x^{2}+b_{n} x y+c_{n} y^{2} \\
Q_{2 n+1}(x, y) & =a_{n} x^{2}-b_{n} x y+c_{n} y^{2} .
\end{aligned}
$$

Using this structure we can create compositions to show that each form represents $\prod_{i=1}^{2 n+1} a_{i} c_{i}$. Also, if a form represents an integer m then it represents $k^{2} m$ for all $k \in \mathbb{Z}$. Thus all integers in the infinite set $\left\{k^{2}\left(\prod_{i=1}^{2 n+1} a_{i} c_{i}\right)\right\}$ are represented by all forms of discriminant $\Delta . \square$

Proof. (of Theorem 2)

We are guaranteed a reduced form, Q_{1}, that represents only quadratic residues and integers that are zero modulo Δ, and a reduced form, Q_{2}, that represents only quadratic non-residues and integers that are zero modulo Δ. Any integer $m \equiv 0(\bmod \Delta)$ can be written in the form $m=\Delta^{k} \ell$ for some $k, \ell \in \mathbb{Z}$ such that $\ell \not \equiv 0(\bmod \Delta)$ or $\ell=0$. We can show that if m is represented by Q_{1} and Q_{2} then so is ℓ. This forces ℓ to be zero, since the only integers represented by both Q_{1} and Q_{2} are zero modulo Δ.

For Further Information

1. My email address: hellers@g.hmc.edu
2. Link to our paper on arXiv: https://arxiv.org/pdf/1708.04877.pdf
3. Reference [1]: D.A. Cox, Primes of the form $x^{2}+n y^{2}$: Fermat, class field theory, and complex multiplication, Vol. 34, John Wiley \& Sons, 2011.

Acknowledgements

I would like to thank the National Science Foundation for funding the WADE Into Research REU (DMS-1461189), Professor Katherine Thompson and Jeremy Rouse for mentoring me over the summer, and my fellow research team members: Chris Donnay, Kate O'Connor, and Erin Wood. Thank you also to Claire Connelly for providing this poster format.

