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Partitions
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gl A partition of a non-negative integer m is a tuple of
non-negative integers A = (A1,...,A,) such that A\; > --- > A,
Background and A1 + -+ + A, = m. The number n is called the length of \.

Concept: Many problems in representation theory lead to
families of polynomials indexed by partitions. This is natural
because in many situations representations are themselves
indexed by partitions.



Interpolation Jack Polynomials
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Polynomials g g an0 - o

.y polynomials Py, indexed by partitions A, in n variables
Bl X1, ..., X, and with coefficients in the field Q(k).

nterpolation Jack Polynomials

Background

Example: when n =3

The interpolation Jack polynomial associated with the partition
A=(2,0,0) is

2k
P/\(Xl,Xg,X3) = X% +X22 +X§ aF (

k——|—1> (x3x2 + xox1 + Xx2x1)

6k’ + 5k + 1
— <k—+l) (x1 + x2 + x3)

k3 4+ 10k? + 3k
k+1




A Brief History
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First defined by Knop and Sahi in 1996 as the unique symmetric
CECLECE polynomials satisfying

@ A degree condition
@ A vanishing condition

© A normalization condition
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Later in 1996, a combinatorial formula was found by Okounkov:

PA(xcxn) = Y 7 (k) [ (xr(s)+e(s, k)—a'(s)+1'(s)k)

T a reverse seT
tableau
of shape A\

Background



Why We Care

On the Given the Lie algebra gl(n, C), we can construct its universal
Mysteries of .
e et enveloping algebra, U.

Jack
Polynomials

P  There is a bijective correspondence between the irreducible

Xiaomin Li representations of gl(n, C) and those of U.

Background

The center of U, C(U), acts on the irreducible representations of U
by scalars, and sometimes we can distinguish different representations
based on these scalars.

There is a distinguished basis of C(U{) called the Capelli elements,
by, which is indexed by partitions.

The irreducible representations of gl(n, C) are also indexed by
partitions, call them V/,.

For v € V,, we have by - v = P{=1(p)v.
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EacKkground Works of Sahi, Salmasian and Serganova further show a
connection between the derivative with respect to k of
two-variable interpolation Jack polynomials and the eigenvalues
of Capelli operators of orthosymplectic Lie superalgebras.




Our Goal
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Background . . .
We would like to find rational functions of k, cf\‘, such that

9 I
P = gc)\PH

Note: These coefficients exist because the P, form a basis for
the space of symmetric polynomials!
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0 5k +3 6k + 4
ap(z,o,o) = <k—1—1> P(0,0,0) — (k 1 ) P(1,0,0)

2
BCETTERYMET

Background



Inspiration
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. For Py with X of length two, this problem was solved by Sahi,
I Salmasian and Serganoval

Background

This work was necessary in obtaining formulas for eigenvalues of
Capelli operators.

It also led to an interesting connection to a famous 100-year old
hypergeometric identity, known as the Dougall-Ramanujan
formula.
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Summer Strategy
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Summer

Results Strategy:

@ Use Sage to generate polynomials Py using the
combinatorial formula.

@ Use Sage to iteratively find the coefficients cf'.
© Try to find patterns in the generated coefficients.
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Summer

Results H: A= (D1’070) and o= (/,L]_,0,0) or i = (0,0,0), then

Dq!
Or—rp1) 1!~ [
(k + pa)P1—F1

(-1)Pr—a . (2K + p2)P1 =4+ (k+ pa)Pr =0
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First idea: Try to prove (some of) our summer conjectures!

Thesis
Results

However, | eventually went in a slightly different direction...



Monomial Symmetric Functions
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The monomial symmetric function indexed by the partition
H;;goilwlxenri% A= ()‘1’ A2, )‘3) is

a a a.
my(x1, x2,Xx3) = E X1t X520 X3

et where the summation is over all distinct permutations
Results a= (a1, a,a3) of \.

Example

The monomial symmetric function associated to A = (3,2,0) is

my(x1, X2, X3) = Xp X3 + XPxX3 + XEx5 + X2x3 + X355 + X33




Monomial Symmetric Functions
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Fact: The monomial symmetric functions also form a basis for

the space of symmetric polynomials.
Thesis
Results



A Few Definitions
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The size of the partition A = (A, ...

JAn)is Al = AL+ + An.

Thesis
Results

The size of A =(3,2,2)is3+2+2=7.
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A )y = (u1, ..., p,) of the same
length we write 1w < X in lexicographic ordering if for some
index s

Aj = pj for j < s and pus < Ag

Thesis
Results

If A=1(3,2,1) and = (3,2,0) then pu < .
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Define by € Q(k) so that

Thesis
Results P)\ = E bé\lmu




Example

On the
Wil  Example: Recall for A = (2,0,0) we have

Interpolation
Jack

Polynomials 5 5 5 ok
Havi Ellers & Pa(xa,%2,x3) = xq +x5 +x3 + (k‘+1) (x3X2 4 X2x1 + X2X1)
Xiaomin Li 2
6k>+5k+1
_( pas] )(Xl +x2 + x3)
9k 1+10k* 43k
+ k+1
; _ 2k 6k*+5k+1

Thesis = m(Q,0,0) + (7k+1) m(17170) — ( K+l m(1,070)

Results
9k3+10k>+3k
+ (7“1 M(0,0,0)
and so

p(1:1.0) 2k
(2,0,0) k+1



A Theorem!
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PEEEEER  For 11 > )\ we have ¢! =0 and for 1 < \ we have

d
b i E : v
p<U<A
Thesis |V|S|>‘|
Results

Conceptually: We can write cf’ in terms of coefficients of
monomial symmetric functions and the ¢} with v “between” 1
and .
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If v > Xor || > |)A| then ¢ = 0.

Proof idea: For v > X look at the leading term in the

Thests. combinatorial formula, and recall that we can construct the
coefficients ¢y iteratively.

For |v| > |A| relate to Jack polynomials and recall that we can

construct the cy iteratively. W



Proof of Theorem 1
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V<A
v|<|Al
Thesis
Results . - .
’ Equating the coefficient of m,, on both sides, we see that
d
9o v ph
A= > bl
<A

[V|<[A]
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Proof idea: Look at the combinatorial formula. W

Thesis .
Results Hence we can write

d 4
Jbéf = Z C)\bllj

u<v<A
[V[<]Al
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Proof idea: Relate to Jack polynomials. H

Tlieee Hence we can write

Results

d

= M VL

SR = D &b
n<r<A
[VI<IAl

Rearranging, we're done. W
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We can write

Thesis
Results




How do we use Theorem 17

On the
Mysteries of
Interpolation

Jack
Polynomials

: . . ’ 8.
e Technique to find the coefficient, ¢}, of P, in 5% P
Xiaomin Li

@ Find the set of partitions v such that y < v < X and
EDY
rhests © For each of these v, find ¢§ and bl).
© Find S b,.
@ Use the coefficients in steps 1 and 2 along with theorem 1
to calculate cf'.
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For D that make sense we have,

In general this can be quite difficult. However...

—2)(D-13)

(D-10,0) —3Dk —2D(D — 1)
Thesis (D 0 O) k + D — 1
Results

(D-110) _ D(D —1)

(DOO) (k—l—D—l)2

(D=22,0) D(D —1)(D

(DO 0)

2(k+ D —3)(k+D—22(k+ D — 1)




A Further Conjecture
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For all a, D that make sense we have,

C(D—a,a,O) _ D2a
Thesis (D7070) a(k —+ D — 1)§(k + D — a)i

Results

This conjecture has been checked in Sage up to D = 15.
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The coefficient of m(p_, ,0) in P(p—p,b0) for all a, b, D that
make sense is

Thesis
Results

b(D_a’a’O) (D = 2b)ﬂ(k +a—b— 1)ﬂ

=20 g — Gk D — 2 — =R

Proof idea: Look at combinatorial formula.
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On the
Mysteries of
Interpolation

Jack
Polynomials

PN  There is plenty of work still to be done! Some possibilities:

Xiaomin Li

© Continue as in my thesis.

@ Try to form a conjecture and then prove it using other
Thesis methods.

Results

© Prove our summer conjectures.

© Find the b} (this won't solve the original problem but
would be helpful).
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