On the Mysteries of Interpolation Jack Polynomials

Havi Ellers \& Xiaomin Li

May 29, 2021

Thank you!

On the
Mysteries of

Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

We would like to thank Dr. Hadi Salmasian and Dr. Michael Orrison for supervising our research on this topic, the Fields Institute for hosting us, and the organizers of the OMC for inviting us to give this talk!

Outline

Background

Summer

Results
Thesis
(2) Summer Results
(3) Thesis Results

Outline

On the
Mysteries of
Interpolation
Jack
Polynomials
Havi Ellers \& Xiaomin Li

(1) Background

Background
Summer
Results
Thesis
Results

(2) Summer Results

(3) Thesis Results

On the

Definition

A partition of a non-negative integer m is a tuple of non-negative integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and $\lambda_{1}+\cdots+\lambda_{n}=m$. The number n is called the length of λ.

Concept: Many problems in representation theory lead to families of polynomials indexed by partitions. This is natural because in many situations representations are themselves indexed by partitions.

Interpolation Jack Polynomials

On the Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Interpolation Jack Polynomials

Interpolation Jack polynomials are certain symmetric polynomials P_{λ}, indexed by partitions λ, in n variables x_{1}, \ldots, x_{n} and with coefficients in the field $\mathbb{Q}(k)$.

Example: when $n=3$

The interpolation Jack polynomial associated with the partition $\lambda=(2,0,0)$ is

$$
\begin{aligned}
P_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\left(\frac{2 k}{k+1}\right)\left(x_{3} x_{2}+x_{2} x_{1}+x_{2} x_{1}\right) \\
& -\left(\frac{6 k^{2}+5 k+1}{k+1}\right)\left(x_{1}+x_{2}+x_{3}\right) \\
& +\frac{9 k^{3}+10 k^{2}+3 k}{k+1}
\end{aligned}
$$

A Brief History

On the
Mysteries of Interpolation Jack
Polynomials

First defined by Knop and Sahi in 1996 as the unique symmetric polynomials satisfying
(1) A degree condition
(2) A vanishing condition
(3) A normalization condition

A Brief History

On the
Mysteries of Interpolation Jack
Polynomials

Later in 1996, a combinatorial formula was found by Okounkov:

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{T \begin{array}{c}
\text { a reverse } \\
\text { tableau } \\
\text { of shape } \lambda
\end{array}}} \psi_{T}(k) \prod_{s \in T}\left(x_{T(s)}+\varphi(s, k)-a^{\prime}(s)+l^{\prime}(s) k\right)
$$

Why We Care

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Given the Lie algebra $\mathfrak{g l}(n, \mathbb{C})$, we can construct its universal enveloping algebra, \mathcal{U}.

There is a bijective correspondence between the irreducible representations of $\mathfrak{g l}(n, \mathbb{C})$ and those of \mathcal{U}.

The center of $\mathcal{U}, C(\mathcal{U})$, acts on the irreducible representations of \mathcal{U} by scalars, and sometimes we can distinguish different representations based on these scalars.

There is a distinguished basis of $C(\mathcal{U})$ called the Capelli elements, b_{λ}, which is indexed by partitions.

The irreducible representations of $\mathfrak{g l}(n, \mathbb{C})$ are also indexed by partitions, call them V_{μ}.

For $v \in V_{\mu}$ we have $b_{\lambda} \cdot v=P_{\lambda}^{k=1}(\mu) v$.

Why We Care

On the

Works of Sahi, Salmasian and Serganova further show a connection between the derivative with respect to k of two-variable interpolation Jack polynomials and the eigenvalues of Capelli operators of orthosymplectic Lie superalgebras.

Our Goal

On the
Mysteries of

Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis Results

Our Goal:

We would like to find rational functions of k, c_{λ}^{μ}, such that

$$
\frac{\partial}{\partial k} P_{\lambda}=\sum_{\mu} c_{\lambda}^{\mu} P_{\mu}
$$

Note: These coefficients exist because the P_{μ} form a basis for the space of symmetric polynomials!

Example

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

For $\lambda=(2,0,0)$ we can write:

$$
\begin{aligned}
\frac{\partial}{\partial k} P_{(2,0,0)}= & \left(\frac{5 k+3}{k+1}\right) P_{(0,0,0)}-\left(\frac{6 k+4}{k+1}\right) P_{(1,0,0)} \\
& +\left(\frac{2}{k^{2}+2 k+1}\right) P_{(1,1,0)}
\end{aligned}
$$

Inspiration

On the

Polynomials
Havi Ellers \&
Xiaomin Li

Background
Summer
Results
Thesis
Results

For P_{λ} with λ of length two, this problem was solved by Sahi, Salmasian and Serganova!

This work was necessary in obtaining formulas for eigenvalues of Capelli operators.

It also led to an interesting connection to a famous 100-year old hypergeometric identity, known as the Dougall-Ramanujan formula.

Outline

On the

Mysteries of

Interpolation
Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background

Background
Summer
Results
Thesis
(2) Summer Results

Results

3. Thesis Results

Summer Strategy

On the
Mysteries of

Polynomials
Havi Ellers \&
Xiaomin Li

Background
Summer
Results
Thesis
Results

Over the summer of 2019 we looked at P_{λ} indexed by partitions of length three.

Strategy:

(1) Use Sage to generate polynomials P_{λ} using the combinatorial formula.
(2) Use Sage to iteratively find the coefficients c_{λ}^{μ}.
(3) Try to find patterns in the generated coefficients.

Summer Results

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer Results

Thesis
Results

We found several possible formulae!
Conjecture
If $\lambda=\left(D_{1}, 0,0\right)$ and $\mu=\left(\mu_{1}, 0,0\right)$ or $\mu=(0,0,0)$, then

$$
c_{\lambda}^{\mu}=\frac{(-1)^{D_{1}-\mu_{1}} \cdot \frac{D_{1}!}{\left(D_{1}-\mu_{1}\right) \mu_{1}} \times\left[\left(2 k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}+\left(k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}\right]}{\left(k+\mu_{1}\right)^{D_{1}-\mu_{1}}}
$$

Outline

On the
Mysteries of Interpolation

Jack
Polynomials
Havi Ellers \& Xiaomin Li

(1) Background

Background
Summer
Results
Thesis
Results

(2) Summer Results

(3) Thesis Results

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background

Summer
Results
Thesis
Results

First idea: Try to prove (some of) our summer conjectures!

However, I eventually went in a slightly different direction...

Monomial Symmetric Functions

On the Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer Results

Thesis
Results

Definition

The monomial symmetric function indexed by the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is

$$
m_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=\sum x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}
$$

where the summation is over all distinct permutations $a=\left(a_{1}, a_{2}, a_{3}\right)$ of λ.

Example

The monomial symmetric function associated to $\lambda=(3,2,0)$ is

$$
m_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3} x_{2}^{2}+x_{1}^{3} x_{3}^{2}+x_{1}^{2} x_{2}^{3}+x_{1}^{2} x_{3}^{3}+x_{2}^{3} x_{3}^{2}+x_{2}^{2} x_{3}^{3}
$$

Monomial Symmetric Functions

On the
Mysteries of
Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Fact: The monomial symmetric functions also form a basis for the space of symmetric polynomials.

A Few Definitions

On the Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background

Summer

Results
Thesis
Results

Definition

The size of the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is $|\lambda|=\lambda_{1}+\cdots+\lambda_{n}$.

Example

The size of $\lambda=(3,2,2)$ is $3+2+2=7$.

A Few Definitions

On the

Definition

For partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), \mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ of the same length we write $\mu<\lambda$ in lexicographic ordering if for some index s

$$
\lambda_{j}=\mu_{j} \text { for } j<s \text { and } \mu_{s}<\lambda_{s}
$$

Example

$$
\text { If } \lambda=(3,2,1) \text { and } \mu=(3,2,0) \text { then } \mu<\lambda \text {. }
$$

A Few Definitions

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Notation

Define $b_{\lambda}^{\mu} \in \mathbb{Q}(k)$ so that

$$
P_{\lambda}=\sum b_{\lambda}^{\mu} m_{\mu}
$$

Example

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer Results

Thesis
Results

Example: Recall for $\lambda=(2,0,0)$ we have

$$
\begin{aligned}
P_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\left(\frac{2 k}{k+1}\right)\left(x_{3} x_{2}+x_{2} x_{1}+x_{2} x_{1}\right) \\
& -\left(\frac{6 k^{2}+5 k+1}{k+1}\right)\left(x_{1}+x_{2}+x_{3}\right) \\
& +\frac{9 k^{3}+10 k^{2}+3 k}{k+1} \\
= & m_{(2,0,0)}+\left(\frac{2 k}{k+1}\right) m_{(1,1,0)}-\left(\frac{6 k^{2}+5 k+1}{k+1}\right) m_{(1,0,0)} \\
& +\left(\frac{9 k^{3}+10 k^{2}+3 k}{k+1}\right) m_{(0,0,0)}
\end{aligned}
$$

and so

$$
b_{(2,0,0)}^{(1,1,0)}=\frac{2 k}{k+1}
$$

A Theorem!

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Theorem 1

For $\mu \geq \lambda$ we have $c_{\lambda}^{\mu}=0$ and for $\mu<\lambda$ we have

$$
c_{\lambda}^{\mu}=\frac{d}{d k} b_{\lambda}^{\mu}-\sum_{\substack{\mu<\nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} b_{\nu}^{\mu}
$$

Conceptually: We can write c_{λ}^{μ} in terms of coefficients of monomial symmetric functions and the c_{λ}^{ν} with ν "between" μ and λ.

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Lemma 1
If $\nu \geq \lambda$ or $|\nu|>|\lambda|$ then $c_{\lambda}^{\nu}=0$.
Proof idea: For $\nu \geq \lambda$ look at the leading term in the combinatorial formula, and recall that we can construct the coefficients c_{λ}^{ν} iteratively.
For $|\nu|>|\lambda|$ relate to Jack polynomials and recall that we can construct the c_{λ}^{ν} iteratively. \square

Proof of Theorem 1

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Hence we can write

$$
\frac{\partial}{\partial k} P_{\lambda}=\sum_{\substack{\nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} P_{\nu}
$$

Equating the coefficient of m_{μ} on both sides, we see that

$$
\frac{d}{d k} b_{\lambda}^{\mu}=\sum_{\substack{\nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} b_{\nu}^{\mu}
$$

Proof of Theorem 1

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Lemma 2
If $\nu<\mu$ then $b_{\nu}^{\mu}=0$.
Proof idea: Look at the combinatorial formula.

Hence we can write

$$
\frac{d}{d k} b_{\lambda}^{\mu}=\sum_{\substack{\mu \leq \nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} b_{\nu}^{\mu}
$$

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Lemma 3

For any partition μ we have $b_{\mu}^{\mu}=1$.
Proof idea: Relate to Jack polynomials.

Hence we can write

$$
\frac{d}{d k} b_{\lambda}^{\mu}=c_{\lambda}^{\mu}+\sum_{\substack{\mu<\nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} b_{\nu}^{\mu}
$$

Rearranging, we're done. ■

Recall

On the Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Theorem 1

We can write

$$
c_{\lambda}^{\mu}=\frac{d}{d k} b_{\lambda}^{\mu}-\sum_{\substack{\mu<\nu<\lambda \\|\nu| \leq|\lambda|}} c_{\lambda}^{\nu} b_{\nu}^{\mu}
$$

How do we use Theorem 1?

On the
Mysteries of

Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Technique to find the coefficient, c_{λ}^{μ}, of P_{μ} in $\frac{\partial}{\partial k} P_{\lambda}$:
(1) Find the set of partitions ν such that $\mu<\nu<\lambda$ and $|\nu| \leq|\lambda|$.
(2) For each of these ν, find c_{λ}^{ν} and b_{ν}^{μ}.
(3) Find $\frac{d}{d k} b_{\lambda}^{\mu}$.
(9) Use the coefficients in steps 1 and 2 along with theorem 1 to calculate c_{λ}^{μ}.

On the

In general this can be quite difficult. However...

Theorem 2

For D that make sense we have,

$$
\begin{aligned}
& c_{(D, 0,0)}^{(D-1,0,0)}=\frac{-3 D k-2 D(D-1)}{k+D-1} \\
& c_{(D, 0,0)}^{(D-1,1,0)}=\frac{D(D-1)}{(k+D-1)^{2}} \\
& c_{(D, 0,0)}^{(D-2,2,0)}
\end{aligned}=\frac{D(D-1)(D-2)(D-3)}{2(k+D-3)(k+D-2)^{2}(k+D-1)} .
$$

A Further Conjecture

On the
Mysteries of Interpolation Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

Conjecture

For all a, D that make sense we have,

$$
c_{(D, 0,0)}^{(D-a, a, 0)}=\frac{D^{\underline{2 a}}}{a(k+D-1)^{\underline{a}}(k+D-a)^{\underline{a}}}
$$

This conjecture has been checked in Sage up to $D=15$.

Another Theorem!

On the
Mysteries of Interpolation Jack
Polynomials

Havi Ellers \&

 Xiaomin LiBackground
Summer
Results
Thesis
Results

Theorem 3

The coefficient of $m_{(D-a, a, 0)}$ in $P_{(D-b, b, 0)}$ for all a, b, D that make sense is

$$
b_{(D-b, b, 0)}^{(D-a, a, 0)}=\frac{(D-2 b)^{\frac{a-b}{}}(k+a-b-1)^{\frac{a-b}{b}}}{(a-b)!(k+D-2 b-1)^{\frac{a-b}{}}}
$$

Proof idea: Look at combinatorial formula.

Future Work

On the

Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thesis
Results

There is plenty of work still to be done! Some possibilities:
(1) Continue as in my thesis.
(2) Try to form a conjecture and then prove it using other methods.
(3) Prove our summer conjectures.
(9) Find the b_{λ}^{μ} (this won't solve the original problem but would be helpful).

On the
Mysteries of
Interpolation
Jack
Polynomials
Havi Ellers \& Xiaomin Li

Background
Summer
Results
Thank you!
Thesis
Results

