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Plane curves

Let k be a field, and consider the vector space k? with coordinates x, y.

Definition
Let f € k[x, y] be a polynomial in the variables x,y. Then the set
{(x,y) € k? | f(x,y) = 0} C k? is called an (affine) plane curve over k.
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Plane curves

Examples

2 3 2

f:_y—X f:yz—x — X f:y2_x
Parabola Nodal cubic Cuspidal cubic

8
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Plane curves

» A curve is smooth if the partial derivatives f,, f, don't simultaneously
vanish anywhere.
» The parabola is smooth since f, = 1.
» The nodal cubic and cuspidal cubic are both singular at (0, 0).

» Smoothness (normality) doesn't distinguish between singularities, but
weak normality does.

» Given a plane curve C over k, we can associate to it a k-algebra k[C]
called its coordinate ring. Then we say that C is weakly normal if
k[C] is weakly normal.

C Parabola Nodal cubic Cuspidal cubic
3 Y — X [V e V3
K[ kb y1/(y = %) | kI y1/(v? = x° = %) | klx,y1/(y* = X°)
Smooth/normal? yes no no
Weakly normal? yes yes no
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Why weak normality?

Normality and weak normality are both notions of how ‘nice’ a curve is,
but normal curves are ‘nicer’. So why consider weak normality?

1. Normalization changes the underlying topological space of a curve,
but weak normalization does not.

Figure: Normalization of a nodal curve

2. Cumino-Manaresi Theorem
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Weakly normal varieties

Definitions

A N-dimensional projective space over an algebraically closed field k is
defined as

kN+1 {0}
ke

Figure: Image credit: Waldorf Projective Geometry collection
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Weakly normal varieties

> X C PQ’ is a projective algebraic set if it is defined as the vanishing
locus of a set of homogeneous polynomials in the coordinates of PQ

P> A projective variety is a projective algebraic set X such that we
cannot write X = Xy U X, for smaller projective algebraic sets X, Xo

» The field of rational functions on a projective variety X, denoted by
K(X), is the field of functions of the form %
where p and q are homogeneous polynomials in the co-ordinates of

PQ’ of same degree, with g £ 0 on X.
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Weakly normal varieties

Definitions (contd.)

» Projective varieties X and Y are birational if K(X) = K(Y).
> A hypersurface is a projective variety defined by one polynomial.

» A projective variety X is weakly normal when, for every U C X that
is defined as the complement of a hypersurface, the subring of K(X)
consisting of elements defined everywhere on U is weakly normal.

Theorem (Cumino—Manaresi)

Every projective variety X over an algebraically closed field is birational to
a weakly normal hypersurface X.

Consequence

Every curve X is birational to a curve with “good” nodes. A field-theoretic
result implies X is birational to a hypersurface X’. By the assertion of

weak normality, the singularities of the hypersurface X’ cannot be too wild.
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Rings

Definition (Ring)
A ring is a set R together with two binary operations +,- : RXx R — R
such that:

1. R is an abelian group under +;

2. Forall a,b,c € R we have (a-b)-c=a-(b-c);

3. There exists an element 1 € R such that for all a € R we have

lp-a =g
4. For all a,b,c € R we have

a-(b+c)=a-b+a-c and
(a+b)-c=a-c+b-c;

The ring R is commutative if for all a,b € R we have a- b= b- a.

Note: We will usually write simply ab for a- b.
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Example

The integers Z form a ring under the usual addition and multiplication.

Hence forth, by “ring” we mean “commutative ring”!



Motivation for Total Quotient Ring

Elements in rings may not have multiplicative inverses!

Example

The element 2 € Z does not have a multiplicative inverse, because there is
no b € Z such that 2b = 1.

Idea: For any ring R we want to find a ring Q(R) such that every
non-zero element of R has an inverse in Q(R).
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Integral Domains

Note: We will only define Q(R) when R is an integral domain, but a
similar definition works in the general case.

Definition

A ring R is an integral domain if a,b € R, ab = 0 implies a=0 or b = 0.

Example

The integers Z are an integral domain, but Z/nZ is not an integral domain
unless n is prime.
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Total Quotient Ring

Definition
Let R be an integral domain, and let S = R — {0}. Then define Q(R) to be the

set R x S together with an equivalence relation. The equivelence class of (r,s) is
denoted ¢ and we have:

r/

r / /
=== = =0
Pl (rs" = r's)

We can make Q(R) into a ring with the binary operations:

r N r s’ +r's
s g ss’
/ /
ror rr
s s ss!

Example

The ring Q(Z) is the rational numbers Q.
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Total Quotient Ring

Key Idea: Q(R) is the smallest ring such that:
» RC Q(R); and

» Every non-zero element in R has an inverse in Q(R).

For those familiar: Q(R) = S~!R.
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Reduced Rings

Definition (Reduced)

A ring R is reduced if a € R, a" = 0 implies a = 0.

Example

The integers Z are reduced. The rings Z/4Z and Z/9Z are not reduced.
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Ideals

Definition (Ideal)

Let R be a ring. A subset | C R is an ideal if
» [ is a subgroup of R under addition; and

» Forall r€ R,a e [ we have ra € /.

Example

The set of integers consisting of multiples of 2 is an ideal of Z.
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Noetherian

Definition (Noetherian)

Let R be a ring. Then R is Noetherian if for every ascending chain of ideals
hchclhcC---
there exists an n € N such that if m > n then [,, = I,.

Example

The following are Noetherian rings:
> Any field.
P> The integers Z.
» The ring Z/nZ for any n.
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Integral element

Definition (Integral element)

Let R be a ring, and let S be an R-algebra. An element s € S is integral
over R if for some positive integer d we have that

s94+ns? 4. 4 rg-1s=0

for some suitable elements r; € R.

Example
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Normalization

Definition (Normalization)

The normalization of the set of elements in S integral over R is a subring
R’ C S of elements that are integral over R.

Example

The normalization of R in C is C.
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Seminormalization and Weak Normalization

Definition (Seminormalization and Weak Normalization)

Let R be a reduced Noetherian ring with total quotient ring Q(R). The
seminormalization of R in Q(R) is the subring

TR:={x€ Q(R): x*,x* € R}
and the weak normalization is

*R:={x € Q(R) : x*>,x3 € R or for some primep > 0 such that x?, px € R}

Observe that we have TR C* R C R'.
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Normality, Seminormality, and Weak Normality

Definition (Normality, Seminormality, and Weak Normality)

Let R be a ring. We say that R is normal if R = R/, seminormal if
R =" R, and weakly normal R =* R.

From the observation R CT R C* R C R’ above, we see that normality
implies weak normality, which implies seminormality.

Example

The subring k[x, y, x\/t, y\/t] inside k(1/t)[x, y] is seminormal, but not
weakly normal.
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Maximal ideal

Definition (Maximal ideal)

A maximal ideal m of a ring R is a proper ideal that is not contained in
any other proper ideal.

Example

In R = k[x, y]/(y?> — x?(x + 1)), which corresponds to the nodal curve,
the element t = % is not in R, but it is in the normalization of R through
the equation xt — y = 0.
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Local ring

Definition (Local ring)

A ring R is local if it contains a unique maximal ideal m. We will denote
such a local ring by (R, m).

Example

Fields are local rings, since they contain a unique maximal ideal (0).
We can make any ring local at a multiplicative subset S containing 1 by
formally inverting all elements in S.
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Nonzerodivisors

Definition (Nonzerodivisors)

An element y in a ring R is called a nonzerodivisor if for any nonzero
a € R, we have ay # 0.

Example

Domains contain no nonzero nonzerodivisors.
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Our Question

Our main question was inspired by a 2008 paper of Heitmann, which
answered affirmatively the corresponding question for seminormality
instead of weak normality.

Question

Let (R, m) be a reduced Noetherian local ring, and let y € m be a
nonzerodivisor such that R/yR is weakly normal. Does it follow that R is
weakly normal?

This question was also answered affirmatively in a 2020 paper of
Murayama, extending a result of Bingener and Flenner, but this proof uses
techniques from scheme theory which we wanted to avoid.
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Proof ldea: Part 1

Proof.
We proceed by contradiction. Suppose (R, m) is a reduced Noetherian
local ring, and there exists a nonzerodivisor y € m such that R/yR is
weakly normal, but R is not weakly normal. If R is not weakly normal,
there exists x € Q(R) such that x ¢ R and EITHER of the following
conditions hold:

() x2,x3 € R.

(I1) There exists a prime number p such that x”, px € R.
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Proof ldea: Part 2

Proof.

We then construct a ring B with R C B C Q(R), and x € B with the

following particularly nice properties:

(1) B is a finitely generated R module (A module is like a vector space,
but over a ring instead of a field).

(2) The induced map R/yR — B/yB is an isomorphism.
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Nakayama’s Lemma

We need a lemma from commutative algebra in order to conclude the
argument:

Lemma (Nakayama-Akizuki-Krull)

Suppose (R, m) is a local ring, a C m is an ideal, and M is a finitely
generated R module. If aM = M, then M = 0.
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Proof Idea: Part 3

We are almost ready to conclude the proof. Let i : R — B be the
inclusion, and let M = B/i(R) (One can check that M has has the
structure of an R-module).

One can show that
-~ B/yB
~ R/yR’

However, one of our properties of B was that the map R/yR — B/yB was
an isomorphism, so M/yM = 0. Therefore, M = yM. Since B is a finitely
generated R-module, M is also a finitely generated R-module. By applying
Nakayama's lemma with a = yR, we see that M = 0. This precisely means
that / is an isomorphism, so x € R, a contradiction. ]

M/yM
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