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Plane curves

Let k be a field, and consider the vector space k2 with coordinates x , y .

Definition

Let f ∈ k[x , y ] be a polynomial in the variables x , y . Then the set
{(x , y) ∈ k2 | f (x , y) = 0} ⊆ k2 is called an (affine) plane curve over k .
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Plane curves

Examples

f = y − x2 f = y2 − x3 − x2 f = y2 − x3

Parabola Nodal cubic Cuspidal cubic
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Plane curves

I A curve is smooth if the partial derivatives fx , fy don’t simultaneously
vanish anywhere.

I The parabola is smooth since fy = 1.
I The nodal cubic and cuspidal cubic are both singular at (0, 0).

I Smoothness (normality) doesn’t distinguish between singularities, but
weak normality does.

I Given a plane curve C over k , we can associate to it a k-algebra k[C ]
called its coordinate ring. Then we say that C is weakly normal if
k[C ] is weakly normal.

C Parabola Nodal cubic Cuspidal cubic

f y − x2 y 2 − x3 − x2 y 2 − x3

k[C ] k[x , y ]/(y − x2) k[x , y ]/(y 2 − x3 − x2) k[x , y ]/(y 2 − x3)

Smooth/normal? yes no no

Weakly normal? yes yes no
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Why weak normality?

Normality and weak normality are both notions of how ‘nice’ a curve is,
but normal curves are ‘nicer’. So why consider weak normality?

1. Normalization changes the underlying topological space of a curve,
but weak normalization does not.

Figure: Normalization of a nodal curve

2. Cumino-Manaresi Theorem
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Weakly normal varieties

Definitions

A N-dimensional projective space over an algebraically closed field k is
defined as

PN
k :=

kN+1 − {0}
k∗

Figure: Image credit: Waldorf Projective Geometry collection
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Weakly normal varieties

Definitions

I X ⊆ PN
k is a projective algebraic set if it is defined as the vanishing

locus of a set of homogeneous polynomials in the coordinates of PN
k

I A projective variety is a projective algebraic set X such that we
cannot write X = X1 ∪ X2 for smaller projective algebraic sets X1,X2

I The field of rational functions on a projective variety X , denoted by
K (X ), is the field of functions of the form p(x0,x1,...,xN)

q(x0,x1,...,xN)
where p and q are homogeneous polynomials in the co-ordinates of
PN
k of same degree, with q 6≡ 0 on X.
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Weakly normal varieties

Definitions (contd.)

I Projective varieties X and Y are birational if K (X ) = K (Y ).

I A hypersurface is a projective variety defined by one polynomial.

I A projective variety X is weakly normal when, for every U ⊆ X that
is defined as the complement of a hypersurface, the subring of K (X )
consisting of elements defined everywhere on U is weakly normal.

Theorem (Cumino–Manaresi)

Every projective variety X over an algebraically closed field is birational to
a weakly normal hypersurface X̃ .

Consequence

Every curve X is birational to a curve with “good” nodes. A field-theoretic
result implies X is birational to a hypersurface X ′. By the assertion of
weak normality, the singularities of the hypersurface X ′ cannot be too wild.
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Rings

Definition (Ring)

A ring is a set R together with two binary operations +, · : R × R → R
such that:

1. R is an abelian group under +;

2. For all a, b, c ∈ R we have (a · b) · c = a · (b · c);

3. There exists an element 1R ∈ R such that for all a ∈ R we have
1R · a = a;

4. For all a, b, c ∈ R we have

a · (b + c) = a · b + a · c and

(a + b) · c = a · c + b · c ;

The ring R is commutative if for all a, b ∈ R we have a · b = b · a.

Note: We will usually write simply ab for a · b.
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Example

Example

The integers Z form a ring under the usual addition and multiplication.

Hence forth, by “ring” we mean “commutative ring”!
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Motivation for Total Quotient Ring

Elements in rings may not have multiplicative inverses!

Example

The element 2 ∈ Z does not have a multiplicative inverse, because there is
no b ∈ Z such that 2b = 1.

Idea: For any ring R we want to find a ring Q(R) such that every
non-zero element of R has an inverse in Q(R).
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Integral Domains

Note: We will only define Q(R) when R is an integral domain, but a
similar definition works in the general case.

Definition

A ring R is an integral domain if a, b ∈ R, ab = 0 implies a = 0 or b = 0.

Example

The integers Z are an integral domain, but Z/nZ is not an integral domain
unless n is prime.
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Total Quotient Ring

Definition

Let R be an integral domain, and let S = R − {0}. Then define Q(R) to be the
set R × S together with an equivalence relation. The equivelence class of (r , s) is
denoted r

s and we have:

r

s
=

r ′

s ′
⇐⇒ (rs ′ − r ′s) = 0

We can make Q(R) into a ring with the binary operations:

r

s
+

r ′

s ′
=

rs ′ + r ′s

ss ′

r

s
· r

′

s ′
=

rr ′

ss ′

Example

The ring Q(Z) is the rational numbers Q.
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Total Quotient Ring

Key Idea: Q(R) is the smallest ring such that:

I R ⊂ Q(R); and

I Every non-zero element in R has an inverse in Q(R).

For those familiar: Q(R) = S−1R.
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Reduced Rings

Definition (Reduced)

A ring R is reduced if a ∈ R, an = 0 implies a = 0.

Example

The integers Z are reduced. The rings Z/4Z and Z/9Z are not reduced.
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Ideals

Definition (Ideal)

Let R be a ring. A subset I ⊂ R is an ideal if

I I is a subgroup of R under addition; and

I For all r ∈ R, a ∈ I we have ra ∈ I .

Example

The set of integers consisting of multiples of 2 is an ideal of Z.
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Noetherian

Definition (Noetherian)

Let R be a ring. Then R is Noetherian if for every ascending chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

there exists an n ∈ N such that if m > n then Im = In.

Example

The following are Noetherian rings:

I Any field.

I The integers Z.

I The ring Z/nZ for any n.
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Integral element

Definition (Integral element)

Let R be a ring, and let S be an R-algebra. An element s ∈ S is integral
over R if for some positive integer d we have that

sd + r1s
d−1 + · · ·+ rd · 1S = 0

for some suitable elements rj ∈ R.

Example
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Normalization

Definition (Normalization)

The normalization of the set of elements in S integral over R is a subring
R ′ ⊆ S of elements that are integral over R.

Example

The normalization of R in C is C.
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Seminormalization and Weak Normalization

Definition (Seminormalization and Weak Normalization)

Let R be a reduced Noetherian ring with total quotient ring Q(R). The
seminormalization of R in Q(R) is the subring

+R := {x ∈ Q(R) : x2, x3 ∈ R}

and the weak normalization is

∗R := {x ∈ Q(R) : x2, x3 ∈ R or for some primep > 0 such that xp, px ∈ R}

Observe that we have +R ⊆∗ R ⊆ R ′.
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Normality, Seminormality, and Weak Normality

Definition (Normality, Seminormality, and Weak Normality)

Let R be a ring. We say that R is normal if R = R ′, seminormal if
R =+ R, and weakly normal R =∗ R.

From the observation R ⊆+ R ⊆∗ R ⊆ R ′ above, we see that normality
implies weak normality, which implies seminormality.

Example

The subring k[x , y , x
√
t, y
√
t] inside k(

√
t)[x , y ] is seminormal, but not

weakly normal.
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Maximal ideal

Definition (Maximal ideal)

A maximal ideal m of a ring R is a proper ideal that is not contained in
any other proper ideal.

Example

In R = k[x , y ]/(y2 − x2(x + 1)), which corresponds to the nodal curve,
the element t = y

x is not in R, but it is in the normalization of R through
the equation xt − y = 0.
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Local ring

Definition (Local ring)

A ring R is local if it contains a unique maximal ideal m. We will denote
such a local ring by (R,m).

Example

Fields are local rings, since they contain a unique maximal ideal (0).
We can make any ring local at a multiplicative subset S containing 1 by
formally inverting all elements in S.
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Nonzerodivisors

Definition (Nonzerodivisors)

An element y in a ring R is called a nonzerodivisor if for any nonzero
a ∈ R, we have ay 6= 0.

Example

Domains contain no nonzero nonzerodivisors.
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Our Question

Our main question was inspired by a 2008 paper of Heitmann, which
answered affirmatively the corresponding question for seminormality
instead of weak normality.

Question

Let (R,m) be a reduced Noetherian local ring, and let y ∈ m be a
nonzerodivisor such that R/yR is weakly normal. Does it follow that R is
weakly normal?

This question was also answered affirmatively in a 2020 paper of
Murayama, extending a result of Bingener and Flenner, but this proof uses
techniques from scheme theory which we wanted to avoid.
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Proof Idea: Part 1

Proof.

We proceed by contradiction. Suppose (R,m) is a reduced Noetherian
local ring, and there exists a nonzerodivisor y ∈ m such that R/yR is
weakly normal, but R is not weakly normal. If R is not weakly normal,
there exists x ∈ Q(R) such that x /∈ R and EITHER of the following
conditions hold:

(I) x2, x3 ∈ R.

(II) There exists a prime number p such that xp, px ∈ R.
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Proof Idea: Part 2

Proof.

We then construct a ring B with R ⊂ B ⊂ Q(R), and x ∈ B with the
following particularly nice properties:

(1) B is a finitely generated R module (A module is like a vector space,
but over a ring instead of a field).

(2) The induced map R/yR → B/yB is an isomorphism.
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Nakayama’s Lemma

We need a lemma from commutative algebra in order to conclude the
argument:

Lemma (Nakayama-Akizuki-Krull)

Suppose (R,m) is a local ring, a ⊂ m is an ideal, and M is a finitely
generated R module. If aM = M, then M = 0.
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Proof Idea: Part 3

Proof.

We are almost ready to conclude the proof. Let i : R → B be the
inclusion, and let M = B/i(R) (One can check that M has has the
structure of an R-module).
One can show that

M/yM ∼=
B/yB

R/yR
.

However, one of our properties of B was that the map R/yR → B/yB was
an isomorphism, so M/yM = 0. Therefore, M = yM. Since B is a finitely
generated R-module, M is also a finitely generated R-module. By applying
Nakayama’s lemma with a = yR, we see that M = 0. This precisely means
that i is an isomorphism, so x ∈ R, a contradiction.
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