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Background

Introduction

Interpolation Jack polynomials are certain polynomials Pλ in n
variables x1, . . . , xn, indexed by partitions λ, and with coefficients
in the field Q(κ) for a fourth variable κ. They were originally
defined by Knop and Sahi in 19961, and later a combinatorial
formula was developed by Okounkov2. In our research we
primarily used the latter formula, given below:

Pλ(x1, ..., xn) = ∑
T a reverse

tableau
of shape λ

ψT(k) ∏
s∈T

(xT(s)− a′(s) + l′(s)κ)

Example. The interpolation Jack polynomial associated with the
partition λ = (2, 0, 0) is

P(2,0,0)(x, y, z) = x2 + y2 + z2 +

(
2κ

κ + 1

)
(xy + xz + yz)

−
(

6κ2 + 5κ + 1
κ + 1

)
(x + y + z) +

9κ3 + 10κ2 + 3κ

κ + 1

Relevance

Consider the Lie algebra gl (n, C). We can form its universal
enveloping algebra, denoted U (gl (n, C)), which is a quotient of the
tensor algebra of gl (n, C) by a particular two-sided ideal. In the
1990s, Okounkov defined a particular basis, sλ, of the center of
U (gl (n, C)) called the quantum immanants, which are indexed by
partitions with at most n parts.
Since gl (n, C) is also a group, we can consider its representations.
A theorem of Cartan and Weyl states that the irreducible
representations, Vµ, of gl (n, C) are also indexed by partitions µ
with at most n parts.
The action of gl (n, C) on each Vµ then gives rise to an action of
the sλ on the Vµ. With this action, for any v ∈ Vµ:

sλ · v = Pκ=1
λ (µ)v

Thus interpolation Jack polynomials are interesting because they
give the eigenvalues of elements of a basis for the center of the
universal enveloping algebra of gl (n, C) when that basis acts on
irreducible gl (n, C)-modules.
More generally, the derivatives of interpolation Jack polynomials
tend to appear when looking at actions on irreducible
representations of Lie algebras.4

Goal

For all partitions λ = (D1, D2, D3) and µ = (µ1, µ2, µ3), we would
like to find rational functions of κ, cλ

µ(κ), such that
∂

∂κ
Pλ(x, y, z) = ∑

µ

cλ
µ(κ)Pµ(x, y, z)

Example 1. For λ = (2, 0, 0) we can write:
∂

∂κ
P(2,0,0) =

(
5κ + 3
κ + 1

)
P(0,0,0) +

(
−6κ − 4

κ + 1

)
P(1,0,0) +

(
2

κ2 + 2κ + 1

)
P(1,1,0)

Results!

Which Pµ Appear

Conjecture 1. For partitions λ and µ, if

(a) ∑ µi > ∑ Di, or
(b) µ ≥ λ in lexicographic ordering,

then Pµ appears with a zero coefficient in the linear combination
for ∂

∂κPλ. If λ has one or two non-zero parts then this is an if and
only if condition.

In what follows we have µi, Di > 0 for all i, and we assume that
the coefficients cλ

µ are are not classified by conjecture 1.
Furthermore, for b > 0 we define

ab := (a + 0)(a + 1) · · · (a + b− 1)

When λ = (D1, D2, D3):

Conjecture 2. If λ = (D1, D2, D3) and µ = (µ1, µ2, µ3) then

cλ
µ =

0 if µ3− D3 < 0

c(D1−D3,D2−D3,0)
(µ1−D3,µ2−D3,µ3−D3)

otherwise

When λ = (D1, 0, 0):

Conjecture 3. If λ = (D1, 0, 0) and µ = (µ1, 0, 0) or µ = (0, 0, 0),
then

cλ
µ(κ) =

(−1)D1−µ1 · D1!
(D1−µ1) µ1! × [(2κ + µ1)

D1−µ1 + (κ + µ1)
D1−µ1]

(κ + µ1)D1−µ1

Conjecture 4. If λ = (D1, 0, 0) and µ = (µ1, µ2, 0), then

cλ
µ(κ) =

(−1)D1−µ1+µ2 · D1! (D1−µ1−1)!
(D1−µ1−µ2)! (µ1−µ2)! µ2!

(κ + µ1− µ2 + 1)µ2 · (κ + D1− µ2)µ2

Conjecture 5. If λ = (D1, 0, 0) and µ = (µ1, µ2, µ3), then

cλ
µ(κ) =

(−1)D1−µ1+µ2 · D1!(µ2−1)!
(µ1−µ2)!(µ2−µ3)!(µ3)!

(κ − µ3 + 1)µ3 · (κ + µ1− µ3 + 1)µ3−1× S

(κ + µ1− µ2 + 1)D1−µ1+µ2−1 · (κ + µ2− µ3 + 1)µ3 · (2κ + µ1− µ3 + 1)µ3

where S =

D1−µ1
−µ2−µ3

∑
j=0

(
D1− µ1− µ2− 1− j

µ3− 1

)(
j + µ2− 1

µ2− 1

)
(2κ+µ1)

D1−µ1−µ2−µ3−j · (κ+D1−µ2− j)j

When λ = (D1, D2, 0):

Conjecture 6. If λ = (D1, D2, 0) and µ = (µ1, 0, 0) or µ = (0, 0, 0),
then
If D1− µ > 0:

cλ
µ(κ) =

(−1)D1−µ1
[
(D1−D2)!

µ1!

]
[(D2− 1)!] [(κ − 1)(κ)] [(2κ + µ1)

D1−µ1−D2]× S

(κ + µ1− D2)D1−µ1 · (2κ + D1− D2)D2−(D1−µ1)

where S has:

leading term =

(
D1− µ1− 1

D2− 1

)
κ2(D2−1)

constant term = (−1)D2−1 · D2 · (µ1− D2 + 1)D2−1 · (D1− D2 + 1)D2−1

If D1− µ1 = 0:
cλ

µ = (−1)D2 · (D2− 1)!

Conjecture 7. If λ = (D1, D2, 0) and µ = (µ1, µ2, 0), then
If µ2 > D2:

cλ
µ(κ) =

(−1)D1+D2−µ1+µ2 · (D1−D2)! (D1−µ1−1)!
(µ1−µ2)! (µ2−D2)! (D1+D2−µ1−µ2)!

(κ + µ1− µ2 + 1)µ2−D2 · (κ + D1− µ2)µ2−D2

Note: To generate these conjectures, we wrote code in Sage to
generate the polynomials and linear combinations, and applied
various manual techniques to discover the formulas. (See [3].)

Future Work
• Complete the cases where we only have partial formulae.
• Try to prove our conjectures.
• Try to generalize to n variable case!
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