Background

Introduction

Interpolation Jack polynomials are certain polynomials P_{λ} in n variables x_{1}, \ldots, x_{n}, indexed by partitions λ, and with coefficients in the field $\mathbb{Q}(\kappa)$ for a fourth variable κ. They were originally defined by Knop and Sahi in 1996^{1}, and later a combinatorial formula was developed by Okounkov ${ }^{2}$. In our research we primarily used the latter formula, given below:

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{T \text { a reverse } \\ \text { tableau } \\ \text { of shape } \lambda}} \psi_{T}(k) \prod_{s \in T}\left(x_{T(s)}-a^{\prime}(s)+l^{\prime}(s) \kappa\right)
$$

Example. The interpolation Jack polynomial associated with the partition $\lambda=(2,0,0)$ is

$$
\begin{aligned}
P_{(2,0,0)}(x, y, z)= & x^{2}+y^{2}+z^{2}+\left(\frac{2 \kappa}{\kappa+1}\right)(x y+x z+y z) \\
& -\left(\frac{6 \kappa^{2}+5 \kappa+1}{\kappa+1}\right)(x+y+z)+\frac{9 \kappa^{3}+10 \kappa^{2}+3 \kappa}{\kappa+1}
\end{aligned}
$$

Relevance

Consider the Lie algebra $\mathrm{gl}(n, \mathbb{C})$. We can form its universal enveloping algebra, denoted $\mathcal{U}(\mathrm{gl}(n, \mathbb{C}))$, which is a quotient of the tensor algebra of $\mathrm{gl}(n, \mathbb{C})$ by a particular two-sided ideal. In the 1990s, Okounkov defined a particular basis, s_{λ}, of the center of $\mathcal{U}(\mathrm{gl}(n, \mathbb{C}))$ called the quantum immanants, which are indexed by partitions with at most n parts.
Since $\mathrm{gl}(n, \mathbb{C})$ is also a group, we can consider its representations. A theorem of Cartan and Weyl states that the irreducible representations, V_{μ}, of $\mathrm{gl}(n, \mathbb{C})$ are also indexed by partitions μ with at most n parts.
The action of $\mathrm{gl}(n, \mathbb{C})$ on each V_{μ} then gives rise to an action of the s_{λ} on the V_{μ}. With this action, for any $v \in V_{\mu}$:

$$
s_{\lambda} \cdot v=P_{\lambda}^{\kappa=1}(\mu) v
$$

Thus interpolation Jack polynomials are interesting because they give the eigenvalues of elements of a basis for the center of the universal enveloping algebra of $\mathrm{gl}(n, \mathbb{C})$ when that basis acts on irreducible $\mathrm{gl}(n, \mathbb{C})$-modules.
More generally, the derivatives of interpolation Jack polynomials tend to appear when looking at actions on irreducible representations of Lie algebras. ${ }^{4}$

Goal

For all partitions $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$, we would like to find rational functions of $\kappa, c_{\mu}^{\lambda}(\kappa)$, such that

$$
\frac{\partial}{\partial \kappa} P_{\lambda}(x, y, z)=\sum_{\mu} c_{\mu}^{\lambda}(\kappa) P_{\mu}(x, y, z)
$$

Example 1. For $\lambda=(2,0,0)$ we can write:

$$
\frac{\partial}{\partial \kappa} P_{(2,0,0)}=\left(\frac{5 \kappa+3}{\kappa+1}\right) P_{(0,0,0)}+\left(\frac{-6 \kappa-4}{\kappa+1}\right) P_{(1,0,0)}+\left(\frac{2}{\kappa^{2}+2 \kappa+1}\right) P_{(1,1,0)}
$$

Results!

Which P_{μ} Appear

Conjecture 1. For partitions λ and μ, if
(a) $\sum \mu_{i}>\sum D_{i}$, or
(b) $\mu \geq \lambda$ in lexicographic ordering,
then P_{μ} appears with a zero coefficient in the linear combination for $\frac{\partial}{\partial \kappa} P_{\lambda}$. If λ has one or two non-zero parts then this is an if and only if condition.
In what follows we have $\mu_{i}, D_{i}>0$ for all i, and we assume that the coefficients c_{μ}^{λ} are are not classified by conjecture 1 .
Furthermore, for $b>0$ we define

$$
a^{\bar{b}}:=(a+0)(a+1) \cdots(a+b-1)
$$

When $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$:
Conjecture 2. If $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ then

$$
c_{\mu}^{\lambda}= \begin{cases}0 & \text { if } \mu_{3}-D_{3}<0 \\ c_{\left(\mu_{1}-D_{3}, \mu_{2}-D_{3}, \mu_{3}-D_{3}\right)}^{\left(D_{1}-D_{3}, D_{2}-D_{3}, 0\right)} & \text { otherwise }\end{cases}
$$

When $\lambda=\left(D_{1}, 0,0\right)$:
Conjecture 3. If $\lambda=\left(D_{1}, 0,0\right)$ and $\mu=\left(\mu_{1}, 0,0\right)$ or $\mu=(0,0,0)$, then

$$
c_{\mu}^{\lambda}(\kappa)=\frac{(-1)^{D_{1}-\mu_{1}} \cdot \frac{D_{1}!}{\left(D_{1}-\mu_{1}\right) \mu_{1}!} \times\left[\left(2 \kappa+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}+\left(\kappa+\mu_{1}\right)^{\left.\overline{D_{1}-\mu_{1}}\right]}\right.}{\left(\kappa+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}}
$$

Conjecture 4. If $\lambda=\left(D_{1}, 0,0\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, 0\right)$, then

$$
c_{\mu}^{\lambda}(\kappa)=\frac{(-1)^{D_{1}-\mu_{1}+\mu_{2}} \cdot \frac{D_{1}!\left(D_{1}-\mu_{1}-1\right)!}{\left(D_{1}-\mu_{1}-\mu_{2}\right)!\left(\mu_{1}-\mu_{2}\right)!\mu_{2}!}}{\left(\kappa+\mu_{1}-\mu_{2}+1\right)^{\overline{\mu_{2}}} \cdot\left(\kappa+D_{1}-\mu_{2}\right)^{\mu_{2}}}
$$

Conjecture 5. If $\lambda=\left(D_{1}, 0,0\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$, then $c_{\mu}^{\lambda}(\kappa)=\frac{(-1)^{D_{1}-\mu_{1}+\mu_{2}} \cdot \frac{D_{1}!\left(\mu_{2}-1\right)!}{\left(\mu_{1}-\mu_{2}\right)!\left(\mu_{2}-\mu_{3}\right)!\left(\mu_{3}\right)!}\left(\kappa-\mu_{3}+1\right)^{\overline{\mu_{3}}} \cdot\left(\kappa+\mu_{1}-\mu_{3}+1\right)^{\overline{\mu_{3}-1}} \times S}{\left(\kappa+\mu_{1}-\mu_{2}+1\right)^{\overline{D_{1}-\mu_{1}+\mu_{2}-1}} \cdot\left(\kappa+\mu_{2}-\mu_{3}+1\right)^{\overline{\mu_{3}}} \cdot\left(2 \kappa+\mu_{1}-\mu_{3}+1\right)^{\overline{\mu_{3}}}}$ where $\mathrm{S}=$

$$
\sum_{j=0}^{\substack{D_{1}-\mu_{1} \\-\mu_{2}-\mu_{3}}}\binom{D_{1}-\mu_{1}-\mu_{2}-1-j}{\mu_{3}-1}\binom{j+\mu_{2}-1}{\mu_{2}-1}\left(2 \kappa+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}-\mu_{2}-\mu_{3}-j}} \cdot\left(\kappa+D_{1}-\mu_{2}-j\right)^{\bar{j}}
$$

When $\lambda=\left(D_{1}, D_{2}, 0\right)$:
Conjecture 6. If $\lambda=\left(D_{1}, D_{2}, 0\right)$ and $\mu=\left(\mu_{1}, 0,0\right)$ or $\mu=(0,0,0)$,
then
If $D_{1}-\mu>0$:
$c_{\mu}^{\lambda}(\kappa)=\frac{(-1)^{D_{1}-\mu_{1}}\left[\frac{\left(D_{1}-D_{2}\right)!}{\mu_{1}!}\right]\left[\left(D_{2}-1\right)!\right][(\kappa-1)(\kappa)]\left[\left(2 \kappa+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}-D_{2}}}\right] \times S}{\left(\kappa+\mu_{1}-D_{2}\right)^{\overline{D_{1}-\mu_{1}}} \cdot\left(2 \kappa+D_{1}-D_{2}\right)^{\overline{D_{2}-\left(D_{1}-\mu_{1}\right)}}}$
where S has:
leading term $=\binom{D_{1}-\mu_{1}-1}{D_{2}-1} \kappa^{2\left(D_{2}-1\right)}$
constant term $=(-1)^{D_{2}-1} \cdot D_{2} \cdot\left(\mu_{1}-D_{2}+1\right)^{\overline{D_{2}-1}} \cdot\left(D_{1}-D_{2}+1\right)^{\overline{D_{2}-1}}$
If $D_{1}-\mu_{1}=0$:

$$
c_{\mu}^{\lambda}=(-1)^{D_{2}} \cdot\left(D_{2}-1\right)!
$$

Conjecture 7. If $\lambda=\left(D_{1}, D_{2}, 0\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, 0\right)$, then If $\mu_{2}>D_{2}$:

$$
c_{\mu}^{\lambda}(\kappa)=\frac{(-1)^{D_{1}+D_{2}-\mu_{1}+\mu_{2}} \cdot \frac{\left(D_{1}-D_{2}\right)!\left(D_{1}-\mu_{1}-1\right)!}{\left(\kappa+\mu_{1}-\mu_{1}+1\right)^{\frac{\mu_{1}}{2}-D_{2}} \cdot\left(\mu_{2}-D_{2}\right)!\left(D_{1}+D_{2}-\mu_{1}-\mu_{2}\right)!}}{\left(\kappa+D_{1}-\mu_{2}\right)^{\mu_{2}-D_{2}}}
$$

Note: To generate these conjectures, we wrote code in Sage to generate the polynomials and linear combinations, and applied various manual techniques to discover the formulas. (See [3].)

Future Work

- Complete the cases where we only have partial formulae.
- Try to prove our conjectures.
- Try to generalize to n variable case!

References:

[1] Friedrich Knop and Siddartha Sahi. Difference equations and symmetric polynomials defined by their zeros. arXiv preprint q-alg/9610017, 1996.
[2] Andrei Okounkov and Grigori Olshanski. Shifted Jack polynomials, binomial formula, and applications. arXiv preprint q-alg/9608020, 1996.
[3] Havi Ellers and Xiaomin Li. Lie algebras report. Available at https:/ /mysite.science.uottawa.ca/hsalmasi/report/report-FUSRP2019.pdf
[4] Hadi Salmasian, pers. com.

Thank you to Hadi Salmasian at the University of Ottawa for mentoring us during the FUSRP program, and to the Fields Institute for hosting us!

