
Lie Algebras Report

Havi Ellers and Xiaomin Li

August 27, 2019

1 Executive Summary

Our research this summer focused on certain polynomials called interpolation Jack polyno-
mials, Pλ. The polynomials we focused on were in three variables, x, y, and z, and had
coefficients that were functions of a fourth variable, κ. It turns out that if we differentiate
Pλ with respect to the variable κ, the result can be written as a sum:∑

cPµ

where each Pµ is an interpolation Jack polynomial, and each c is a function of κ. Our goal
this summer was to find a formula for the c. This problem can be broken down into several
cases, and for some of these cases we found a complete formula for c, where as in other cases
we have only a partial formula.

1

Contents

1 Executive Summary 1

2 Background 3
2.1 Theoretical Motivations . 3

2.1.1 Combinatorial Algorithm . 3
2.1.2 Lie algebras . 4

3 Research Outcomes 7
3.1 Which Pµ Appear . 7
3.2 Observation on (D1, D2, D3) . 7
3.3 Formulae for λ = (D, 0, 0) . 8
3.4 Partial Formulae for λ = (D1, D2, 0) . 9
3.5 Generalization to n-variable Case . 10

4 Methods 11
4.1 Computer Code . 11
4.2 Techniques to Obtain Conjectures . 14

5 Future Plans 20

6 Acknowledgements 20

A Appendix: Code 21
A.1 Code to Generate Polynomials . 21
A.2 Code to Get the Linear Combinations . 29
A.3 Other Helper Functions . 30
A.4 Code to Check Conjectures . 32

2

2 Background

2.1 Theoretical Motivations

Our research over the summer of 2019 focused on the interpolation Jack polynomials. Prop-
erties of these polynomials have been extensively studied in the papers of Sahi, Knop-Sahi,
and Okounkov-Olshanski. These polynomials have connections to representation theory and
to the theory of Lie algebras that motivates their study. In this section we will first present
a combinatorial algorithm (discovered by Okounkov) to generate interpolation Jack polyno-
mials, and then discuss some of their connections to representation theory of Lie algebras.

2.1.1 Combinatorial Algorithm

We begin with a quick introduction to partitions and Young diagrams, as these are integral
in the study of interpolation Jack polynomials.

Definition 1. A partition of an integer m is a tuple λ = (λ1, . . . , λn) such that λ1, . . . , λn
are non-negative integers, λ1 ≥ · · · ≥ λn, and

∑
λi = m. The number n is called the length

of the partition λ, and the number m is called the size of the partition λ, denoted |λ|.

Young diagrams are certain collections of boxes that are associated to partitions.

Definition 2. (See [4].) Let λ = (λ1, . . . , λn) be a partition with |λ| = m. Then a Young
diagram (also called a Ferrers diagram) of shape λ is a collection of m boxes with n left-
justified rows, with row i containing λi boxes.

Interpolation Jack polynomials are certain polynomials in n variables x1, . . . , xn, indexed
by partitions λ of length at most n. We now present a series of definitions, which build
up to a combinatorial formula for the interpolation Jack polynomials Pλ. We present the
algorithm for interpolation Jack polynomials in three variables, but it can be generalized to
n variables with only slight modification.

Definition 3. Let µ = (µ1, µ2, µ3) be a Young diagram. Then for a box s at position (i, j)
in µ, we define

aµ(s) = µi − j a′µ(s) = j − 1

lµ(s) = |{k > i |µk ≥ j}| l′µ(s) = i− i

Note that l′µ(s), lµ(s), a′µ(s), and aµ(s) are respectively the number of boxes in µ to the north,
south, east and west of the box s (see [3]).

Definition 4. Let µ = (µ1, µ2, µ3) be a Young diagram. Then for a box s in µ, we define

bµ(s, κ) =
aµ(s) + κ(lµ(s) + 1)

aµ(s) + κlµ(s) + 1

Definition 5. Let λ = (λ1, λ2, λ3) be a Young diagram. Then a reverse tableau is a filling
of the Young diagram λ by the numbers 1, 2, 3 such that the rows are weakly decreasing
from left to right and the columns are strictly decreasing from top to bottom.

3

For a box s in a reverse tableau T , we denote the entry in s by T (s), and we denote the
position of s by (i, j), where i denotes the row number and j denotes the column number.

Definition 6. Let λ = (λ1, λ2, λ3) be a Young diagram, and let T be a reverse tableau of
shape λ. Then for i = 0, . . . , 3, we define

λ(i) = the boxes in T that contain the numbers i+ 1, . . . , 3.

Definition 7. Let λ = (λ1, λ2, λ3) be a Young diagram, and let T be a reverse tableau of
shape λ. Then for i = 1, . . . , 3, we define (R/C)λ(i−1)/λ(i) to be the set of boxes s in the

Young diagram λ(i) with the following two properties:

• Property 1 : The row that contains s also contains a box from λ(i−1) that is not in λ(i).

• Property 2 : The column that contains s does not contain a box from λ(i−1) that is not
in λ(i).

Definition 8. Let λ = (λ1, λ2, λ3) be a Young diagram and let T be a reverse tableau of
shape λ. Then we define

ψT (κ) =
3∏
i=1

∏
s∈(R/C)

λ(i−1)/λ(i)

bλ(i)(s, κ)

bλ(i−1)(s, κ)

where the function b is as in definition 4.

Finally we define the interpolation Jack polynomials that we wish to work with.

Definition 9. Let λ = (λ1, λ2, λ3) be a partition. Then the interpolation Jack polynomial
associated with λ is

Pλ(x1, x2, x3) =
∑

T a reverse
tableau

of shape λ

∏
s∈T

ψT (κ)(xT (s) − a′(s) + l′(s)κ)

Note that in much of what follows, we will use the variables x, y, z instead of the variables
x1, x2, x3.

2.1.2 Lie algebras

In this section we provide a more theoretical background to the motivation behind studying
interpolation Jack polynomials, starting with a brief introduction to Lie algebras.

Definition 10. (See [1].) Let F be a field. A Lie algebra over F is an F -vector space L
together with a bilinear map

L× L→ L, (x, y) 7→ [x, y]

that satisfies the following properties:

[x, x] = 0 for all x ∈ L, (1)

[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0 for all x, y, z ∈ L (2)

The map (x, y) 7→ [x, y] is often called the Lie bracket.

4

For any Lie algebra L, we can form its universal enveloping algebra. We first give a
more abstract definition of the universal enveloping algebra, and then a more concrete one
involving the tensor algebra of a Lie algebra.

Definition 11. (See [2].) Let L be a Lie algebra over a field F . A universal enveloping
algebra of L is a pair (U , i), where U is an associative algebra with 1 over F , i : L→ U is a
linear map satisfying

i([x, y]) = i(x)i(y)− i(y)i(x) for all x, y ∈ L, (3)

and the following holds: for any associative F -algebra U with 1 and any linear map j : L→ U
satisfying (3), there exists a unique homomorphism of algebras φ : U → U (sending 1 to 1)
such that φ ◦ i = j.

This is a rather abstract definition, and we will not deal with it directly. Instead, we
consider the tensor algebra of a vector space V . 1

Definition 12. Let V be a finite-dimensional vector space over a field F . Let T 0V =
F, T 1V = V , and for each m > 0 let Tm = V ⊗ · · · ⊗ V (m times), where ⊗ denotes the
tensor product. The tensor algebra on V is then the vector space

I(V) =
∞⊕
i=0

T iV

together with the product

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wm

Note that this choice of product makes I(V) an associative algebra with unity.

Now let L be a finite-dimensional Lie algebra, and let J be the two-sided ideal in I(L)
generated by elements of the form x⊗y−y⊗x− [x, y] (where x, y ∈ L). Let U(L) = I(L)/J ,
and let π : I(L)→ U(L) be the canonical homomorphism. Then the pair (U(L), i), where i
is the restriction of π to L, is a universal enveloping algebra for L, and furthermore it is the
unique universal enveloping algebra of L up to isomorphism.
Thus for a finite-dimensinoal Lie algebra L we can refer the universal enveloping algebra of
L, which can be thought of as the quotient algebra U(L) = I(L)/J , as described above.
We now shift our focus to a particular finite-dimensional Lie algebra, the general linear
group of order n over C, gl (n,C). It is left as an exercise to the reader to show that with
Lie bracket

[x, y] := xy − yx for all x, y ∈ gl (n,C)

the vector space gl (n,C) is a Lie algebra over C. We can now form the universal enveloping
algebra of gl (n,C), denoted by U(gl (n,C)). The Harish-Chandra isomorphsim implies that
the center of the latter algebra is isomorphic to the subspace of symmetric polynomials in
C[x1, . . . , xn]. The following theorem is due to Okounkov:

1Note that this discussion is heavily influenced by chapter 17 in [2].

5

Theorem 1. There is a basis of Z(U(gl (n,C))) that is indexed by partitions with at most
n parts (where Z(U(gl (n,C))) denotes the center of U(gl (n,C))).

Let us call the elements in this basis sλ.
We will now take a brief detour into representation theory. For a vector space V let gl (V)
denote the set of all invertible linear transformations from V to itself (which is a group under
composition), and recall the following definitions:

Definition 13. Let G is a group and V be a vector space. Then V is a G-module (or a
representation of G) if there is a group homomorphism ρ : G→ gl (V).

Definition 14. Let G be a group and let V be a G-module with group homomorphism
ρ : G→ gl (V). Let W ⊆ V be a vector subspace of V . Then W is a submodule of V if

w ∈ W =⇒ (ρ(g))(w) ∈ W for all g ∈ G

Definition 15. Let G be a group and let V be a G-module. Then V is irreducible if the
only submodules of V are {0} and V (note that these will always be submodules).

We now present the following theorem, due to Carter and Weyl:

Theorem 2. The set of all irreducible representations of gl (n,C) is indexed by partitions
with at most n parts.

Let us call these irreducible representations Vµ. Now, for each sλ we can write

sλ =

(∑
i

ci(xi1 ⊗ · · · ⊗ xiri)

)
+ J

for some xij ∈ gl (n,C) and some ci ∈ C, where the ideal J is as described above. We can
then define an action of the sλ on the Vµ by

sλ · v =
∑
i

ciρµ(xi1) ◦ · · · ◦ ρµ(xiri)(v)

where ρµ : gl (n,C)→ gl (Vµ) is the group homomorphism giving rise to the representation Vµ,
and ◦ denotes composition2. Now, at long last, we come to the relevance of the interpolation
Jack polynomials. Recall from the previous section that an interpolation Jack polynomial
is a specific polynomial in n variables x1, . . . , xn, indexed by partitions of length at most n.
Let us denote the interpolation Jack polynomial associated to the partition λ by Pλ. Then
for any v ∈ Vµ we can write

sλ · v = P κ=1
λ (µ)v

Thus interpolation Jack polynomials are interesting because they give the eigenvalues of
elements of a basis for the center of the universal enveloping algebra of gl (n,C) when that
basis acts on irreducible gl (n,C)-modules.

2Note that this action is independent of choice of representative for the coset (
∑

i xi1 ⊗ · · · ⊗ xiri) + J

6

3 Research Outcomes

Recall:

Definition 16. A partition of an integer m is a tuple λ = (λ1, . . . , λn) such that λ1, . . . , λn
are non-negative integers, λ1 ≥ · · · ≥ λn, and

∑
i

λi = m.

In what follows, let λ = (D1, D2, D3) and µ = (µ1, µ2, µ3) be partitions. Furthermore,
for partitions µ and λ, let cλµ be the coefficient of Pµ in the linear combination for ∂

∂κ
Pλ.

We break up our conjectures into five sections: section 3.1 deals with which Pµ appear with
a non-zero coefficient, section 3.2 deals with the case λ = (D1, D2, D3) where D1, D2, D3 6= 0,
section 3.3 deals with the case λ = (D1, 0, 0) where D1 6= 0, section 3.4 deals with the case
λ = (D1, D2, 0) where D1, D2 6= 0, and section 3.5 presents a possible generalization to n
variables. In sections 3.2 and 3.3 we have a complete classification of cλµ, and section 3.4 we
have a partial classification.

3.1 Which Pµ Appear

The first question to be asked is which Pµ appear with a non-zero coefficient in the linear
combination for ∂

∂κ
Pλ. In regards to this we have the following conjecture:

Conjecture 1. For partitions λ and µ as above, if

(a)
∑
µi >

∑
Di, or

(b) µ ≥ λ in lexicographic ordering,

then Pµ appears with a zero coefficient in the linear combination for ∂
∂κ
Pλ. If λ has one

or two non-zero parts then this is an if and only if condition. The case where λ has three
non-zero parts is dealt with in more detail in section 3.2.

In the following, we assume that for λ = (D1, D2, D3) and µ = (µ1, µ2, µ3) we have∑
µi ≤

∑
Di and µ <lex λ (µ < λ in lexicographical order).

3.2 Observation on (D1, D2, D3)

For D1, D2, D3 6= 0 we have

c
(D1,D2,D3)
(µ1,µ2,µ3)

=

{
0 if µ3 −D3 < 0

c
(D1−D3,D2−D3,0)
(µ1−D3,µ2−D3,µ3−D3)

otherwise

Thus the case where λ has three non-zero parts can be completely classified by looking at
the case when λ has at most two non-zero parts.

7

3.3 Formulae for λ = (D, 0, 0)

Since the formulae often involve products of consecutive terms, we give the following defini-
tion to make the formulae more succinct.

Definition 17. Let b > 0. Then

ab := (a+ 0)(a+ 1) · · · (a+ b− 1))

Note that in what follows, a will often be a polynomial, such as κ+ µ1, 2κ+ µ1, etc.

Remark: when a consecutive product is written in this form, we should notice that f(k)
is the “start” of the product, and b is the number of terms in this product.

Example 1.

(2κ+ µ1)
D−µ1 := (2κ+ µ1)(2κ+ µ1 + 1) · · · (2κ+D − 1)

We found that the formula for the coefficient of µ in λ = (D1, 0, 0) depends on the number
of non-zero parts in µ. We thus present three formulae.

Formula 1. Conjecture for the coefficient of (µ1, 0, 0) in (D1, 0, 0), where µ1 ≥ 0:

(−1)D1−µ1 · D1!
(D1−µ1) µ1! × [(2κ+ µ1)

D1−µ1 + (κ+ µ1)
D1−µ1]

(κ+ µ1)D1−µ1

Formula 2. Conjecture for the coefficient of (µ1, µ2, 0) in (D1, 0, 0), where µ1, µ2 > 0:

(−1)D1−µ1+µ2 · D1! (D1−µ1−1)!
(D1−µ1−µ2)! (µ1−µ2)! µ2!

(κ+ µ1 − µ2 + 1)µ2 · (κ+D1 − µ2)µ2

Formula 3. Conjecture for the coefficient of (µ1, µ2, µ3) in (D1, 0, 0), where µ1, µ2, µ3 > 0:

(−1)D1−µ1+µ2 · D1!(µ2−1)!
(µ1−µ2)!(µ2−µ3)!(µ3)!(κ− µ3 + 1)µ3 · (κ+ µ1 − µ3 + 1)µ3−1 × S

(κ+ µ1 − µ2 + 1)D1−µ1+µ2−1 · (κ+ µ2 − µ3 + 1)µ3 · (2κ+ µ1 − µ3 + 1)µ3

where S =

D1−µ1−µ2−µ3∑
j=0

(
D1 − µ1 − µ2 − 1− j

µ3 − 1

)(
j + µ2 − 1

µ2 − 1

)
(2κ+µ1)

D1−µ1−µ2−µ3−j · (κ+D1−µ2− j)j

The linear combination for Pλ generated by these three formulae has been checked to be
accurate for all D1 ≤ 33 (the case of D1 ≤ 33 took more than 14 hours).

8

3.4 Partial Formulae for λ = (D1, D2, 0)

In this case we again found that the formula for the coefficient of Pµ depends on the number
of non-zero parts in µ. We have yet to investigate the case where µ has three non-zero
parts, so we present no conjecture for this case. For µ with exactly two non-zero parts we
have a general conjecture, which is presented in formula 8. For µ with one non-zero part we
were unable to find a general formula but have conjectures about some special cases, and
a conjecture for a partial general formula. We start with the case where µ has exactly one
non-zero part.

Formula 4. Conjecture for the coefficient of (µ1, 0, 0) in (D1, 1, 0):
If D1 − µ1 > 0:

(−1)D1−µ1
[
(D1−1)!
µ1!

]
[(κ− 1)(κ)] [(2κ+ µ1)

D1−µ1−1]

(κ+ µ1 − 1)D1−µ1

If D1 − µ1 = 0:

(−1)D2 · (D2 − 1)! = (−1)1 · (D2 − 1)! = −(D2 − 1)!

This formula has been checked for all D1 ≤ 15 (as of Aug 24 at 11:50 pm).

Formula 5. Conjecture for the coefficient of (µ1, 0, 0) in (D1, 2, 0):
If D1 − µ1 > 0:

(−1)D1−µ1
[
(D1−2)!
µ1!

]
[(κ− 1)(κ)] [(2κ+ µ1)

D1−µ1−2]× S

(κ+ µ1 − 2)D1−µ1 · (2κ+D1 − 2)2−(D1−µ1)

where
S = (D1 − µ1 − 1)κ2 − (3(D1 − 1) + µ1)κ− 2(µ1 − 1)(D1 − 1)

If D1 − µ1 = 0:

(−1)D2 · (D2 − 1)! = (−1)2 · (D2 − 1)! = (D2 − 1)!

This formula has been checked for all D1 ≤ 15 (as of Aug 24 at 11:50 pm).

Formula 6. Conjecture for the coefficient of (µ1, 0, 0) in (D1, 3, 0):
If D1 − µ1 > 0:

(−1)D1−µ1
[
(D1−3)!
µ1!

]
[(3− 1)!] [(κ− 1)(κ)] [(2κ+ µ1)

D1−µ1−3]× S)

(κ+ µ1 − 3)D1−µ1 · (2κ+D1 − 3)3−(D1−µ1)

9

where

S =
1

2
[(D1 − µ1 − 2)(D1 − µ1 − 1) · κ4

− 4(D1 − µ1 − 1)(2D1 + µ1 − 4) · κ3

+ ((6D1 − 7)µ2
1 + (−6D2

1 + 14D1 − 9)u+ 23(D1 − 2)(D1 − 1)) · κ2

+ ((6D1 − 10)µ2
1 + (18D2

1 − 64D1 + 54)µ1 − 28(D1 − 2)(D1 − 1)) · κ
+ 6(µ1 − 2)(µ1 − 1)(D1 − 2)(D1 − 1)]

If D1 − µ1 = 0:
(−1)D2 · (D2 − 1)! = (−1)3 · (D2 − 1)!

This formula has been checked for all D1 ≤ 15 (as of Aug 24 at 11:50 pm).

We now present a partial formula for the coefficient of (µ1, 0, 0) in (D1, D2, 0).

Formula 7. Conjecture for the coefficient of (µ1, 0, 0) in (D1, D2, 0):
If D1 − µ > 0:

(−1)D1−µ1
[
(D1−D2)!

µ1!

]
[(D2 − 1)!] [(κ− 1)(κ)] [(2κ+ µ1)

D1−µ1−D2] · S

(κ+ µ1 −D2)D1−µ1 · (2κ+D1 −D2)D2−(D1−µ1)

where S has:

leading term =

(
D1 − µ1 − 1

D2 − 1

)
κ2(D2−1)

constant term = (−1)D2−1 ·D2 · (µ1 −D2 + 1)D2−1 · (D1 −D2 + 1)D2−1

If D1 − µ1 = 0:

(−1)D2 · (D2 − 1)! = (−1)D1−µ1+D2 · (D2 − 1)!

Finally, we present a formula for the coefficient of µ with exactly two non-zero parts in
λ with exactly two non-zero parts.

Formula 8. Conjecture for the coefficient of (µ1, µ2, 0) in (D1, D2, 0) where µ1, µ2 > 0:
If µ2 > D2:

(−1)D1+D2−µ1+µ2 · (D1−D2)! (D1−µ1−1)!
(µ1−µ2)! (µ2−D2)! (D1+D2−µ1−µ2)!

(κ+ µ1 − µ2 + 1)µ2−D2 · (κ+D1 − µ2)µ2−D2

3.5 Generalization to n-variable Case

We think Formula 2 could be generalized to the n-variable case. That is, we conjecture
that the coefficient of (µ1, µ2, 0, . . . , 0) in (D, 0, 0 . . . , 0), where µ1, µ2 > 0, is:

(−1)D−µ1+µ2 · D! (D−µ1−1)!
(D−µ1−µ2)! (µ1−µ2)! µ2!

(κ+ µ1 − µ2 + 1)µ2 · (κ+D − µ2)µ2

Note that we have not tested this conjecture for n 6= 3.

10

4 Methods

4.1 Computer Code

(1) Get polynomials Pλ

We first followed the definitions of interpolation Jack polynomials and wrote the func-
tion named getAnswer(allLambda, plot) to generate them. The argument “allLambda”
is the partition λ = (D1, D2, D3) and the argument “plot” is a boolean value passed in,
where the function will plot all possible reverse fillings and print their corresponding
polynomials if “plot” is set to be “True”.

Below are function definitions in Appendix A.1:

• getCopy(lsOfls): Takes in a list of lists named “lsOfls”. Return the deep copy
(each list in lsOfls is copied by value instead of by reference) of it.

• removeNone(tList): If needed, remove ”None” in a list of lists. This function is
for display purpose.

• xi(i): xi(1) = x, xi(2) = y and xi(3) = z

• aprime(s): a′(s), as defined the formula for the interpolation Jack polynomials
(see section 2.1.1).

• lprime(s): l′(s), as defined in the formula for the interpolation Jack polynomials
(see section 2.1.1).

• getTabPos(tabi): Return the locations (i, j) of a box s in a tableau named “tabi”.

• getTab12(tList): Return tableaux λ(0) = T, λ(1), λ(2), λ(3) = ∅ (as defined in
the formula for the interpolation Jack polynomials (see section 2.1.1)) and the
locations of their boxes.

• initializeProperty12Marker(tabi): The argument “tabi” means “tab i”, λ(i). We
use two lists of lists of boolean values and call them “markers”, where each boolean
value in marker j represents whether the box s at the corresponding position
satisfies property j (j = 1, 2, see Definition 7). All boxes have initial boolean
value as “False”.

• countRowIdx(tabiPos, rowIdx): Takes in “tabiPos”, which is a list of positions
(i, j) of this tab i: λ(i) (i = 0, 1, 2, 3). Count number of boxes which has row
index equal to “rowIdx”.

• countColumnIdx(tabiPos, colIdx): Takes in “tabiPos”, which is a list of positions
(i, j) of this tab i: λ(i) (i = 0, 1, 2, 3). Count number of boxes which has column
index equal to “colIdx”.

• updateProperty1Marker(tList, tabiPos, tabiMinus1Pos, property1Marker): Takes
in the list of lists which represents the original Young diagram: “tList”, the
positions of λ(i): “tabiPos”, λ(i−1): “tabiMinus1Pos” (i=1,2,3), list of lists of
boolean values: “property1Marker”. Mark boxes by property 1. If a box s satisfies
property 1, then the boolean value at the corresponding position in marker1 will
be set to “True”.

11

• updateProperty2Marker(tList, tabiPos, tabiMinus1Pos, property2Marker): Takes
in the list of lists which represents the original Young diagram: “tList”, the
positions of λ(i): “tabiPos”, λ(i−1): “tabiMinus1Pos” (i=1,2,3), list of lists of
boolean values: “property1Marker”. Mark boxes by property 2. If a box s satisfies
property 2, then the boolean value at the corresponding position in marker2 will
be set to “True”.

• getRCi(tList, allTab, allTabPos, i): Return R/Cλ(i−1)/λ(i) (i = 1, 2, 3), as defined
in the formula for the interpolation Jack polynomials (see section 2.1.1).

• psi(tList): Return ψT (κ), as defined in the formula for the interpolation Jack
polynomials (see section 2.1.1).

• b(u, s, k): Return bµ(s, κ), as defined in the formula for the interpolation Jack
polynomials (see section 2.1.1).

• a(u, s): Return aµ(s), as defined in the formula for the interpolation Jack poly-
nomials (see section 2.1.1)

• l(u, s): Return lµ(s), as defined in the formula for the interpolation Jack polyno-
mials (see section 2.1.1).

• initUnfilledPositionsStart(tListStart): Takes in a list of lists named “tListStart”,
which represents the Young diagram. Initialize and return the list of all unfilled
positions, which is just the list of all positions (i,j) for all boxes s in this Young
diagram.

• fill(tList, unfilledPositions, allFilledLists): Takes in the original reverse filling,
represented by a list of lists named “tList”, the positions of unfilled boxes: “un-
filledPositions”, and current list of reverse fillings obtained: “allFilledLists”. Pop
one box from “unfilledPositions”, call fillEntry() to fill this box with one of 1,2,
or 3 (if possible) and recurse.

• fillEntry(i, j, num, tList, unfilledPositions, allFilledLists): Helper function for
fill(tList, unfilledPositions, allFilledLists). Fill entry (i, j) with “num”.

• plotTabs(allFilledLists): Each element in “allFilledLists” is a list of lists which
represents a reverse filling. This function plots all those filled tableaux.

• getAllReverseT(allLambda): Return tableaux of all possible reverse fillings of
shape allLambda.

• getPHelper(allFilledLists, plot): Each element in “allFilledLists” is a list of lists
which represents a reverse filling. Return final polynomial Pλ by adding the
polynomials for all reverse fillings.

• getAnswer(allLambda, plot): Given a partition “allLambda” = λ= (D1, D2, D3)
and D1 ≥ D2 ≥ D3 ≥ 0, return the polynomial Pλ by calling getPHelper().

(2) Get Linear Combinations

getLinearComb(P) is the function which takes in the polynomial Pλ and outputs the
linear combination for ∂

∂κ
Pλ. It first uses the built-in functions of SageMath to get

the leading monomial lm() and the leading coefficient lc() of ∂
∂κ
Pλ. Then, we set

12

µ = (µ1, µ2, µ3) to be the degrees of x, y, z in this leading monomial, respectively.
Finally we subtract lc · Pµ from ∂

∂κ
Pλ and repeat this process.

Pseudo Code for getLinearComb(P):

Algorithm 1 Get the Linear Combination for ∂
∂κ
Pλ

1: dP ← partial derivative of Pλ with respect to κ
2: linComb = ∅
3:

4: while dP 6= 0 do
5: lm ← leading monomial of dP
6: lc ← leading coefficient of dP
7: u1, u2, u3← degree of x,y,z in lm, respectively
8:

9: Pu ← getAnswer(u) for u = (u1, u2, u3)
10: PuCoef ← coefficient of lm in Pu
11: coef = (lc / PuCoef)
12: dP ← dP - coef ∗ Pu
13: linComb.append(coef, (u1, u2, u3))

14: return linComb

Below are function definitions in Appendix A.2:

• getLmAndDegs(poly): Takes in a polynomial “poly”. Return a tuple “(lm, lc,
degs)”, which contains the leading monomial “lm” of “poly”, the leading coeffi-
cient “lc” of “poly”, and the degrees “degs” of x, y, z in that leading monomial.

• getLinearComb(P): Takes in “P” which is Pλ. Return the linear combination for
∂
∂κ
Pλ as a list of tuple, where each tuple (coef, µ) contains the coefficient of Pµ in

∂
∂κ
Pλ and µ itself.

(3) Other Helper Functions

Below are function definitions in Appendix A.3:

• checkSymmetric(poly): Check whether a polynomial is symmetric.

• part(n, k): Partition number n into k parts. Return a list of tuples of size k where
each tuple is a partition of n.

• partition(n): Partition number n into any number of parts (all possible partitions
of n). Return a list of tuples where each tuple is a partition of n.

• getMuLessThanLam(lams): Takes in a partition“lams”. Return all µ = (µ1, µ2, µ3)
such that

∑
µi <

∑
Di where “lams” is λ = (D1, D2, D3).

• getLexLessThan(lowestU, lams): Takes in two partitions “lowestU” and “lams”.
Return all µ = (µ1, µ2, µ3) such that µ <lex “lowerU” and

∑
µi <

∑
Di where

“lams” is λ = (D1, D2, D3).

13

(4) Check Conjectures

Appendix A.4 contains the code to check our conjectures. Below are function definitions
in Appendix A.4.

• formulai(lam, u): Function to return polynomial conjectured by Formula i (i =
1, 2, . . . , 6).

• CheckFormulas(lam, u): Function that combines conjectures altogether. If we
have a conjecture for the coefficient of Pu in ∂

∂κ
Plam, it returns the result generated

by the conjectured formula. Otherwise, it returns “None”.

(5) Improve Program Efficiency

• Instead of using Tableau class in SageMath, we used the list of lists as the structure
for the tableaux and only convert it to tableaux when needed (such as for plotting).

• We used dictionaries to stored the Pλ,
∂
∂κ
Pλ, and the linear combination for ∂

∂κ
Pλ

for those λ we have calculated. The dictioanries are called pDict,dpDict, and
tripleDict respectively. We use the “%store magic” to store the dictionaries before
shutting down the kernal in Jupyter Notebook and use %store -r to refresh from
store.

(5) Checking Conjectures

• Our first method to check a conjecture for coefficents cλµ is to calculate the linear

combination for ∂
∂κ
Pλ and compare it with our guess.

• The second method is to use our conjectured formulas to calculate our guess for
cλµ and then subtract cλµ · Pµ from ∂

∂κ
Pλ. Check if ∂

∂κ
Pλ become 0 eventually. In

this way, we avoid the process of calculating the linear combinations, and thus
would improve the time efficiency.

4.2 Techniques to Obtain Conjectures

(1) Set i = D − µ1

In a lot of cases we will see the patterns are clearer when we change D − µ1 instead
of changing D and µ1 independently. Therefore, we set i = D− µ1 and conjecture the
formula as a function depending on i and other parameters. In the end, we substitute i
with D−µ1 in our conjecture. One of the advantages is that if we fix D−µ1 (comparing
to fixing D or µ1), then the change of the coefficients of the polynomial cλµ(κ) along
the change of µ1 would be clearer and in many cases it would be easy to guess the
coefficients of κ as a polynomial of µ1 (or D). Especially when expand the polynomial
cλµ(κ), the coefficients of each κn (n = 0, 1, 2, . . .) are usually polynomials of µ1 with
increasing or decreasing degree as n increase.

Example:

Take i = 7, µ = (D−7, 2, 2) for example. When µ = (2, 2, 2), (3, 2, 2), (4, 2, 2), (5, 2, 2), . . . ,
the unfactored parts in cλµ are (below we only show the unfactored part):

14

(9, 0, 0)→ (2, 2, 2) = −(36k3 + 276k2 + 696k + 576) · (. . .)
(10, 0, 0)→ (3, 2, 2) = −(36k3 + 345k2 + 1101k + 1170) · (. . .)
(11, 0, 0)→ (4, 2, 2) = −(36k3 + 414k2 + 1596k + 2064) · (. . .)
(12, 0, 0)→ (5, 2, 2) = −(36k3 + 483k2 + 2181k + 3318) · (. . .)

. . .

We can see the coefficient of k3 is constant, the coefficient of k2 is linear in µ1, the
coefficient of k1 is quadractic in µ1, and the coefficient of k0 is cubic in µ1. Then it
is easy to use Mathematica to solve each coefficient and obtain the general formula of
the unfactored part in the above examples:

−(36k3 + (69µ1 + 138)k2 + (45µ2
1 + 180µ1 + 156)k + (10µ3

1 + 60µ2
1 + 104µ1 + 48)).

(2) Add Cancelled Terms

In some cases the numerators and the denominator of cλµ can be completely factored
into products of linear terms of κ. However, in many cases there’s some parts of it
that cannot be factored into products of linear terms. In this situation, we first look
at more examples, with all other variables fixed except one (for example µ1). Then
determine the degree of the part that cannot be factored. In this step we often need to
add some terms to both the numerator and the denominator or give back some terms
to the unfactored part.

Example: Take i = D − µ1 = 2. We use Sage to factor and look at the coefficient cλµ
where λ = (D, 0, 0) and µ = (D − 2, 0, 0). Below we use “λ→ µ” to represent cλµ:

(2, 0, 0)→ (0, 0, 0) =
(5k + 3)

(k + 1)

(3, 0, 0)→ (1, 0, 0) =
3 · (5k + 4)

(k + 2)

(4, 0, 0)→ (2, 0, 0) =
2 · 3 · (5k2 + 15k + 12)

(k + 2)(k + 3)

(5, 0, 0)→ (3, 0, 0) =
2 · 5 · (5k2 + 21k + 24)

(k + 3)(k + 4)

(6, 0, 0)→ (4, 0, 0) =
3 · 5 · (5k2 + 27k + 40)

(k + 4)(k + 5)

. . .

From these examples it is reasonable to guess that there will be an unfactored part
should of degree 2 and that has the form 5k2 + Adding terms to some numerators
and denominators would make the pattern clearer:

15

(2, 0, 0)→ (0, 0, 0) =
1 · (5k + 3)k

k(k + 1)
=

1 · (5k2 + 3k + 0)

k(k + 1)

(3, 0, 0)→ (1, 0, 0) =
3 · (5k + 4)(k + 1)

(k + 1)(k + 2)
=

3 · (5k2 + 9k + 4)

(k + 1)(k + 2)

(4, 0, 0)→ (2, 0, 0) =
6 · (5k2 + 15k + 12)

(k + 2)(k + 3)

(5, 0, 0)→ (3, 0, 0) =
10 · (5k2 + 21k + 24)

(k + 3)(k + 4)

(6, 0, 0)→ (4, 0, 0) =
15 · (5k2 + 27k + 40)

(k + 4)(k + 5)

. . .

(2) Products of (2k+. . .)

Another situation that appears very often is in some part of the cλµ, for example,
the denominator, as we fix D − µ1 and increase µ1, we might see (2k + 1), (2k +
1), (2k + 3), (2k + 3), (2k + 5), (2k + 5) In fact, we should add the cancelled term
and make them (2k + 0)(2k + 1), (2k + 1)(2k + 2), (2k + 3)(2k + 3), (2k + 3)(2k +
4), (2k + 4)(2k + 5), (2k + 5)(2k + 6) The reason is that the pattern usually is:
cλµ can be factored into parts where most of the parts are the product of consecutive
numbers (such as µ1 · (µ1 + 1) · · · (D − 1)D) or consecutive linear terms of κ (such as
(k + µ1)(k + µ1 + 1) · · · (k +D − 1)(k +D)).

Example:

(9, 0, 0)→ (3, 3, 3) =
. . .

. . . (2k + 1)(2k + 3)

(10, 0, 0)→ (4, 3, 3) =
. . .

· · · (2k + 3)

(11, 0, 0)→ (5, 3, 3) =
. . .

· · · (2k + 3)(2k + 5)

(12, 0, 0)→ (6, 3, 3) =
. . .

· · · (2k + 5)

. . .

should be organized to:

(9, 0, 0)→ (3, 3, 3) =
. . .

. . . (2k + 1)(2k + 2)(2k + 3)

(10, 0, 0)→ (4, 3, 3) =
. . .

· · · (2k + 2)(2k + 3)(2k + 4)

(11, 0, 0)→ (5, 3, 3) =
. . .

· · · (2k + 3)(2k + 4)(2k + 5)

(12, 0, 0)→ (6, 3, 3) =
. . .

· · · (2k + 4)(2k + 5)(2k + 6)

. . .

16

(3) Leading Term and Constant Term

The leading term and the constant term will provide a lot of information, especially
when they can be factored. We will illustrate the advantages of looking at them through
the following example for (D, 0, 0)→ (D − i, 0, 0).

Example:

(D, 0, 0) → (D − µ1, 0, 0) has some part which cannot be factored. For example, if
we have obtained the following formulas for this unfactored part and want to combine
them to get a general formula.

(D, 0, 0)→ (D − 1, 0, 0) =
· · · [3k + 2(D − 1)]

. . .

(D, 0, 0)→ (D − 2, 0, 0) =
· · · [9k3 + · · ·+ 2(D − 2)(D − 1)]

. . .

(D, 0, 0)→ (D − 3, 0, 0) =
· · · [17k4 + · · ·+ 2(D − 3)(D − 2)(D − 1)]

. . .

(D, 0, 0)→ (D − 4, 0, 0) =
· · · [33k5 + · · ·+ 2(D − 4)(D − 3)(D − 2)(D − 1)]

. . .

(D, 0, 0)→ (D − 5, 0, 0) =
· · · [65k6 + · · ·+ 2(D − 5)(D − 4)(D − 3)(D − 2)(D − 1)]

. . .
. . .

We first look at the leading terms: 3k, 9k3, 17k4, 33k5, 65k6. Notice we have

3 = 21 + 1

9 = 22 + 1

17 = 23 + 1

33 = 24 + 1

65 = 25 + 1

. . .

Then it is reasonable to guess maybe the actual formula is

(2k + . . .) · · · (2k + . . .) + (ki−1 + . . .)

Combining the constant term, which has (D − i) · · · (D − 1), we now conjecture:

(2k +D − i) · · · (2k +D − 1) + (ki−1 + . . .)

Since the constant term is 2 · (D − i) · · · (D − 1) and moreover,

17

3 = 21 + 1 = 21 + 11

9 = 22 + 1 = 22 + 12

17 = 23 + 1 = 23 + 13

33 = 24 + 1 = 24 + 14

65 = 25 + 1 = 25 + 15

. . . ,

we update the conjecture to be

(2k +D − i) · · · (2k +D − 1) + (k +D − i) · · · (k +D − 1)

=(2k + µ1) · · · (2k +D − 1) + (k + µ1) · · · (k +D − 1)

=(2k + µ1)
D−µ1 + (k + µ1)

D−µ1

Indeed, our final conjecture (Formula 1) contains this part.

(4) Pascal’s Identity and Binomial Coefficients

When we compare examples, sometimes if we take out part of the polynomial and
compare that part, we would see they satisfy the Pascal’s identity. This indicates that
the binomial coefficients are possibly involved.

Example:

For example, this shows up when we study the unfactored part of (D, 0, 0) → (D −
i, µ2, µ3) (µ2, µ3 > 0). After we fixed µ3 = 1, we look at the leading coefficient and have
noticed that it changes along the change of µ2 and i. We thus write it as a function
f(µ2, i) depending on i and µ2. Then f(1, 2) = 1, f(1, 3) = 3, f(1, 4) = 7

i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 . . .
D − i, 1, 1 1 3k 7k2 15k3 31k4 63k5 127k6 255k7 . . .
D − i, 2, 1 1 4k 11k2 26k3 57k4 120k5 247k6 . . .
D − i, 3, 1 1 5k 16k2 42k3 99k4 219k5 . . .

. .

If we look at the first two rows of the table above, notice 3+1 = 4, 7+4 = 11, 15+11 =
26, 31 + 26 = 57, . . . The key observation is that

f(µ2, i) = f(µ2, i− 1) + f(µ2 − 1, i− 1).

This should remind us of Pascal’s identity(
n

k

)
=

(
n

k − 1

)
+

(
n− 1

k − 1

)
.

18

Moreover, the leading coefficients of the first row has a clear pattern: 2i−1 − 1. Using
this as an initial condition and the recursive formula above, we could write out the
formula for f(µ2, i) as a function of i for each fixed µ2.

Using the pattern 2i−1 − 1, we first conjecture it to be the difference of a consecutive
product of (2k + . . .) and a consecutive product of (k + . . .), but it does not work.
Later we apply the formula for geometric sum:

2i−1 − 1

=2i−2 + 2i−3 + · · ·+ 21 + 20,

and change the conjecture to be a sum of consecutive products of (2k + . . .). This
interpretation was checked to be correct for many examples. By changing the values
for µ3, we obtain another binomial coefficient and conjecture the unfactored part of
(D, 0, 0)→ (D − i, µ2, µ3) (µ2, µ3 > 0) as the following:

D−µ1−µ2−µ3∑
j=0

(
D − µ1 − µ2 − 1− j

µ3 − 1

)(
j + µ2 − 1

µ2 − 1

)
(2k+µ1)

D−µ1−µ2−µ3−j ·(k+D−µ2−j)j

19

5 Future Plans

All of the formulae presented here are conjectures, based on code written in Sage. In the
future we would like to try to prove these formulae using theory, and also to complete the
formulas for which we have only a partial formula.

6 Acknowledgements

We would like to thank Dr. Salmasian from the University of Ottawa for mentoring us
over the summer of 2019 at the Fields Undergraduate Summer Research Program (FUSRP),
and the Fields Institute for Research in the Mathematical Sciences for hosting us for this
program.

References

[1] Erdmann, K., Wildon, M. J.. Introduction to Lie Algebras, Springer Undergraduate
Mathematics Series. London, Springer-Verlag London, Ltd, 2006.

[2] Humphreys, James. Introduction to Lie algebras and representation theory. New York,
Springer-Verlag New York Inc, 1972.

[3] Macdonald, I. G.. Symmetric functions and Hall polynomials, second edition. New York,
Oxford University Press Inc, 1995.

[4] Sagan, Bruce. The symmetric group: representations, combinatorial algorithms, and
symmetric functions, first edition. Belmont, California, Wadsworth Inc, 1991.

20

A Appendix: Code

A.1 Code to Generate Polynomials

#Deep copy a list of list

def getCopy(lsOfls):

ret = []

for ls in lsOfls:

ret.append(copy(ls))

return ret

#If needed, remove "None" in a list of list (see "getTab12(tList)")

def removeNone(tList):

tListCopy = getCopy(tList)

tList = []

for idx, row in enumerate(tListCopy):

newRow = []

for e in row:

if e!=None:

newRow.append(e)

tList.append(newRow) #we need to keep [] for the u tableau later

return tList

#x1 is x; x2 is y; x3 is z

def xi(i):

if i == 1:

return x-2*k

elif i == 2:

return y-k

return z

#a’(s)

def aprime(s): # position s = tuple (i,j)

(i,j) = s #Xiaomin: Notice i,j should start with 1, so we add 1 below:

return (j+1)-1

#l’(s)

def lprime(s): # position s = tuple (i,j)

(i,j) = s #Xiaomin: Notice i,j should start with 1, so we add 1 below:

return (i+1)-1

#-------Calculate lambda^(0)=T, lambda^(1), lambda^(2), lambda^(3)={} ---------

21

#Return the locations (i,j) of boxes s in a tableau

def getTabPos(tabi):

ret = []

for r in range(len(tabi)):

for c in range(len(tabi[r])):

if tabi[r][c] != None:

ret.append((r,c))

return ret

#Return tableaus lambda^(0)=T, lambda^(1), lambda^(2), lambda^(3)={}

and the locations of their boxes

def getTab12(tList):

T = Tableau(tList)

tab12 = []

tab12Pos = []

for i in [1,2]:

tabi = T.anti_restrict(i)

tabi = tabi.to_list()

tabiPos = getTabPos(tabi)

tabi = removeNone(tabi)

#Xiaomin: if needed, could keep the ‘None’.

This is more for display purpose

tab12.append(tabi)

tab12Pos.append(tabiPos)

return (tab12, tab12Pos)

#-----------------------Calculate R/C... ----------------------

#We use two boolean markers to mark if a box satisfies properties or not.

#Initialize the markers for proerty 1 and proerty 2 (all boxes have "False")

def initializeProperty12Marker(tabi):

marker = []

for i,row in enumerate(tabi):

newRow = []

for e in row:

if e!=None:

newRow.append(False)

if newRow != []:

marker.append(newRow)

marker2 = getCopy(marker)

22

return marker, marker2

#count number of boxes in row with index = rowIdx

def countRowIdx(tabiPos, rowIdx):

count = 0

for (i,j) in tabiPos:

if i==rowIdx:

count += 1

return count

#count number of boxes in row with index = colIdx

def countColumnIdx(tabiPos, colIdx):

count = 0

for (i,j) in tabiPos:

if j==colIdx:

count += 1

return count

#Mark boxes by property1

def updateProperty1Marker(tList, tabiPos, tabiMinus1Pos, property1Marker):

for rowIdx in range(len(property1Marker)):

countI = countRowIdx(tabiPos, rowIdx)

#count (rowIdx, ?) from tabiPos = num of boxes in tabi for row idx

countIMinus1 = countRowIdx(tabiMinus1Pos, rowIdx)

#similar, count row idx elements in tabiMinus1

if countIMinus1 > countI: #then all s in this row has property1

property1Marker[rowIdx] = [True for ij in property1Marker[rowIdx]]

#update this row!

#Mark boxes by property2

def updateProperty2Marker(tList, tabiPos, tabiMinus1Pos, property2Marker):

if property2Marker==[]:

return

for colIdx in range(len(property2Marker[0])):

countI = countColumnIdx(tabiPos, colIdx)

#count (colIdx, ?) from tabiPos = num of boxes in tabi for column idx

countIMinus1 = countColumnIdx(tabiMinus1Pos, colIdx)

#similar, count column idx elements in tabiMinus1

if countIMinus1 <= countI: #then all s in this column has property 2

for i in range(len(property2Marker)):

if len(property2Marker[i]) >= (colIdx+1):

property2Marker[i][colIdx] = True #update this row!

23

#Return R/C_(i-1)/i i=1,2,3

def getRCi(tList, allTab, allTabPos, i):

tabiPos = allTabPos[i]

tabiMinus1Pos = allTabPos[i-1]

RCi = []

property1Marker, property2Marker = initializeProperty12Marker(allTab[i])

updateProperty1Marker(tList, tabiPos, tabiMinus1Pos, property1Marker)

updateProperty2Marker(tList, tabiPos, tabiMinus1Pos, property2Marker)

for (i,j) in tabiPos: #since all s in R/C come from tableau i

if property1Marker[i][j]==False:

continue

if property2Marker[i][j]==False:

continue

RCi.append((i,j))

return RCi

#-----------------------Calculate psi_T(k) ----------------------

psi_T(k)

def psi(tList):

Get Tableau lambda^(0),lambda^(1),lambda^(2),lambda^(3)

tab0 = tList #Young diagram with boxes of numbers 1,2,3

(tab1, tab2), (tab1Pos, tab2Pos) = getTab12(tList)

#tab1 = Young diagram with boxes of numbers 2,3

#tab2 = Young diagram with boxes of numbers 3

tab3 = {}

allTab = [tab0, tab1, tab2, tab3]

Get Tableau positions (i,j)

tab0Pos = getTabPos(allTab[0])

tab3Pos = getTabPos(allTab[3])

allTabPos = [tab0Pos, tab1Pos, tab2Pos, tab3Pos]

Now calculate all RC

allRC = []

for i in [1,2,3]:

24

RCi = getRCi(tList, allTab, allTabPos, i)

allRC.append(RCi)

Finally, calculate psi_T(k)

ret = 1

for i in [1,2,3]:

for s in allRC[i-1]: #since the first of allRC is allRC[0]

tabi = allTab[i]

tabiMinus1 = allTab[i-1]

tabi = removeNone(tabi)

tabiMinus1 = removeNone(tabiMinus1)

ret *= b(tabi, s, k) / b(tabiMinus1, s, k) #s = position (i,j)

return ret

#b_u(s,k)

def b(u, s, k): #u is a Young diagram.

aa = a(u, s)

ll = l(u, s)

return (aa + k*(ll+1)) / (aa + k*ll + 1)

#a_(s)

def a(u, s):

(i,j) = s

return len(u[i]) - (j+1) #Xiaomin: Notice i,j should start with 1

#l_(s)

def l(u, s):

(i,j) = s

i+=1; j+=1 #Xiaomin: Notice i,j should start with 1

count = 0

for m in range(i+1, 4): #i < m <=3

if len(u)>=m and len(u[m-1]) >= j:

count += 1

return count

#-------Find all valid filling (reverse tableau) of 3,2,1----------------

#Initialize unfilledPositionsStart, return the list of all positions

def initUnfilledPositionsStart(tListStart):

unfilledPositionsStart = []

for i in range(len(tListStart)):

for j in range(len(tListStart[i])):

25

unfilledPositionsStart.append((i,j))

return unfilledPositionsStart

#Fill entry (i,j) with num

def fillEntry(i,j,num, tList, unfilledPositions, allFilledLists):

#fill num into entry i,j:

copyList = getCopy(tList)

copyList[i][j] = num

#pop unfilledPositions:

copyUnfilledPositions = copy(unfilledPositions)

copyUnfilledPositions.pop(0)

#continue fill:

fill(copyList, copyUnfilledPositions, allFilledLists)

Fill the whole tableau with numbers 1,2,3

def fill(tList, unfilledPositions, allFilledLists):

#-------------Done! return--------------

if len(unfilledPositions) == 0:

allFilledLists.append(tList)

return

#---------------Fill:------------------

(i,j) = unfilledPositions[0]

if i==0: #1st row

if j==0:

for num in [3,2,1]:

fillEntry(i,j,num, tList, unfilledPositions, allFilledLists)

else: #j>0:

reverseRange = range(1, tList[i][j-1]+1)

reverseRange.reverse()

for num in reverseRange:

fillEntry(i,j,num, tList, unfilledPositions, allFilledLists)

else: #2nd or 3rd row

if j==0:

for num in [3,2,1]:

if num < tList[i-1][j]: # compare with the "up" neighber

fillEntry(i,j,num, tList, unfilledPositions, allFilledLists)

else: #j>0:

26

reverseRange = range(1, tList[i][j-1]+1)

reverseRange.reverse()

for num in reverseRange:

if num < tList[i-1][j]:

fillEntry(i,j,num, tList, unfilledPositions, allFilledLists)

Plot the filled tableaus

def plotTabs(allFilledLists):

tableaus = []

for tList in allFilledLists:

T = Tableau(tList)

tableaus.append(T)

show(T.plot(descents=False))

print ascii_art(T), "\n"

print "count tableaus = ", len(tableaus)

Get all Reverse Tableaus of filling 1,2,3

def getAllReverseT(allLambda):

tListStart = []

for i in range(3):

if allLambda[i]!=0:

tListStart.append([None for i in range(allLambda[i])])

unfilledPositionsStart = initUnfilledPositionsStart(tListStart)

allFilledLists = [] # will store all Reverse Tableaus of filling 1,2,3

fill(tListStart, unfilledPositionsStart, allFilledLists)

return allFilledLists

#Given lambda = (lambda1, lambda2, lambda3).

Already know lambda1 >= lambda2 >= lambda3 >=0

-------MAIN: All fillings will be stored into "allFilledLists"-----

def getPHelper(allFilledLists, plot):

P = R(0) # poly ring

if plot:

print "count tableaus = ", len(allFilledLists)

27

for T in allFilledLists:

currT = 1

for i in range(len(T)):

for j in range(len(T[i])):

s = (i,j)

currT *= (xi(T[i][j]) - aprime(s) + lprime(s)*k)

P += currT * psi(T)

if plot:

print "======================================\n***Curr Tableau is:"

show(Tableau(T).plot(descents=False))

print "its polynomial is = "

show(currT)

print "======================================"

return P

def getAnswer(allLambda, plot):

allFilledLists = getAllReverseT(allLambda)

print "After filling, allFilledLists =", allFilledLists

answer = getPHelper(allFilledLists, plot)

return answer

#Main code to set up environment===

T.<k> = QQbar[]

#Xiaomin: 1. construct a rational field of variable ‘k’

T.<k> = ZZ[]

#Xiaomin: 1. construct a rational field of variable ‘k’

FT = FractionField(T)

#Xiaomin: 2. Extend it to a rational function field of ‘k’

FT = T

R.<x,y,z> = PolynomialRing(FT, order=’lex’)

#Xiaomin: polynomial of x,y,z over ‘FT’ (rational function field of ‘k’)

28

print R

F = FractionField(R)

#Xiaomin: extend the x,y,z polynomial ring to a rational function field

print F

#-------------above is just to construct correct ring or field---------------

pDict = {}

tripleDict = {}

pDictSmall = {}

import time

start_time = time.time()

%store -r pDictSmall

print "pDictSmall retrieve done"

print("---took time %s seconds ---" % (time.time() - start_time))

start_time = time.time()

%store -r tripleDict

print "tripleDict retrieve done"

print("---took time %s seconds ---" % (time.time() - start_time))

A.2 Code to Get the Linear Combinations

Return the leading monomial and the degrees of x,y,z in it.

def getLmAndDegs(poly):

lm = poly.lm()

lc = poly.lc()

xdeg = lm.degree(x)

ydeg = lm.degree(y)

zdeg = lm.degree(z)

return lm, lc, (xdeg,ydeg,zdeg)

return part1 + part2 + part3

29

#Return the linear combination for dP_lambda

def getLinearComb(P):

diffP = diff(P, k)

poly = diffP

triples of (coef, u, Pu)--changed to tuple of (coef, u)

ret = []

while poly != 0:

lm, lc,degs = getLmAndDegs(poly)

Pu = getAnswer(degs, plot=False)

Pu *= x^0 #Xiaomin: for the integers to have type "polynomial"

coef1 = lc

coef2 = Pu.monomial_coefficient(lm)

coef = coef1 / coef2

ret.append((coef,degs))

poly = poly - coef * Pu

return ret

A.3 Other Helper Functions

Check if a polynomial is symmetric

def checkSymmetric(poly):

if poly != poly.subs(x=y, y=x):

return False

if poly != poly.subs(x=z, z=x):

return False

if poly != poly.subs(y=z, z=y):

return False

return True

import numpy as np

#Partition number n into k parts

def part(n, k):

def _part(n, k, pre):

if n <= 0:

return []

if k == 1:

if n <= pre:

30

return [[n]]

return []

ret = []

for i in range(min(pre, n), 0, -1):

ret += [[i] + sub for sub in _part(n-i, k-1, i)]

return ret

return _part(n, k, n)

#Partition number n into any number of parts

def partition(n):

part3 = part(n,3)

part2 = part(n,2)

part1 = part(n,1)

for ls in part2:

ls.append(0)

for ls in part1:

ls += [0,0]

Get all u such that sum(u) < sum(lambda)

def getMuLessThanLam(lams):

count = 0

ret = []

s = sum(lams)

print "All u such that sum(u)<sum(lambda):"

for x1 in [0..s]:

for y1 in [0..min(s-x1, x1)]:

for z1 in [0..min(s-x1-y1, y1)]:

if x1 > lams[0]:

continue

if (x1,y1,z1)==lams:

continue

else:

count += 1

ret.append((x1,y1,z1))

print "COUNT =", count

return ret

Return A > B in lex order

def lexBigger(A, B):

(a1,a2,a3) = A

(b1,b2,b3) = B

31

if a1 > b1:

return True

elif a1==b1 and a2>b2:

return True

elif a1==b1 and a2==b2 and a3>b3:

return True

else:

return False

Return u < lowerU in lexicographical order, but

still the sum cannot be bigger than lams

def getLexLessThan(lowestU, lams):

count = 0

ret = []

print "All u s.t.lex(u)<lex(lowestU): (sum at least should < sum(lams))"

for x1 in [0..lowestU[0]-1]:

for y1 in [0..x1]:

for z1 in [0..y1]:

if x1+y1+z1 > sum(lams):

continue

count += 1

ret.append((x1,y1,z1))

for x1 in [lowestU[0]]:

for y1 in [0..x1]:

for z1 in [0..y1]:

if lexBigger(lowestU, (x1,y1,z1)):

if x1+y1+z1 > sum(lams):

continue

count += 1

ret.append((x1,y1,z1))

print "COUNT =", count

return ret

A.4 Code to Check Conjectures

import math

def fac(x):

return math.factorial(x)*k^0

32

(D,0,0) -> (u1,0,0) #old name: formula1_1

def formula1(lam, u):

D,D2,D3 = lam

u1,u2,u3 = u

numerator = (-1)^(D-u1) * fac(D) / (fac(u1)*(D-u1))

(2*k+u1)..(2*k+D-1)

part2k = 1

for n in [(2*k+u1)..(2*k+D-1)]:

part2k *= n

(*k+u1)..(k+D-1)

partk = 1

for n in [(k+u1)..(k+D-1)]:

partk *= n

return numerator * (part2k+partk) / partk

(D,0,0) -> (u1,u2,0) #old name: formula1_2

def formula2(lam, u):

D,D2,D3 = lam

u1,u2,u3 = u

-----------numerator------------

numerator = (-1)^(D-u1+u2) * fac(D)*fac(D-u1-1) / (fac(D-u1-u2)*fac(u1-u2)*fac(u2))

-----------denominator----------

denominator = 1

#(k+u1-u2+1)..(k+u1)

for n in [(k+u1-u2+1)..(k+u1)]:

denominator *= n

#(k+D-u2)..(k+D-1)

for n in [(k+D-u2)..(k+D-1)]:

denominator *= n

return numerator/denominator

33

(D,0,0) -> (u1,u2,u3) #old name: formula1_3

from scipy.special import comb

def formula3(lam, u):

D,D2,D3 = lam

u1,u2,u3 = u

-----------numerator------------

Constant Part

const = (-1)^(D-u1+u2) * fac(D)*fac(u2-1) / (fac(u1-u2)*fac(u2-u3)*fac(u3))

(k-u3+1)..k

partkUp = 1

for i in [(k-u3+1)..k]:

partkUp *= i

(k-u3+1)..k

partkUp2 = 1

for i in [(k+u1-u3+1)..(k+u1-1)]:

partkUp2 *= i

lastPart

lastPart = 0

for j in [0..D-u1-u2-u3]:

curr = Integer(comb(D-u1-u2-1-j,u3-1)) * Integer(comb(j+u2-1,j))

for n in [(2*k+u1)..(2*k+ D-u2-u3-1 -j)]:

curr *= n

for n in [(k+ D-u2-j)..(k+ D-u2-1)]:

curr *= n

lastPart += curr

-----------denominator----------

(k+u1-u2+1)..(k+D-1)

partDown1 = 1

for i in [(k+u1-u2+1)..(k+D-1)]:

partDown1 *= i

(k+u2-u3+1)..(k+u2)

partDown2 = 1

for i in [(k+u2-u3+1)..(k+u2)]:

partDown2 *= i

34

(2k+u1-u3+1)..(2k+u1)

part2k = 1

for i in [(2*k+u1-u3+1)..(2*k+u1)]:

part2k *= i

return (const*partkUp*partkUp2*lastPart) / (partDown1*partDown2*part2k)

(D1,1,0) -> (u1,0,0) #old name: formula2_1

def formula4(lam, u):

D1,D2 = lam[0],lam[1]

u1,u2,u3 = u

#Case 1: D1-u1==0

if D1-u1==0:

return (-1)^D2 * fac(D2-1)

#Case 2: D1-u1>0

numerator = (-1)^(D1-u1) * fac(D1-D2) / fac(u1) * k*(k-1)

(2*k+u1)..(2*k+D1-2)

for n in [(2*k+u1)..(2*k+D1-D2-1)]:

numerator *= n

denominator = 1

for n in [(k+u1-1)..(k+D1-2)]:

denominator *= n

return numerator / denominator

(D1,2,0) -> (u1,0,0) #old name: formula2_2

def formula5(lam, u):

D1,D2 = lam[0],lam[1]

u1,u2,u3 = u

#Case 1: D-u1==0

35

if D1-u1==0:

return (-1)^D2 * fac(D2-1)

#Case 2: D1-u1>0

numerator = (-1)^(D1-u1) * fac(D1-D2) / fac(u1) * k*(k-1)

(2*k+u1)..(2*k+D1-3)

for n in [(2*k+u1)..(2*k+D1-D2-1)]:

numerator *= n

lastPart = (D1-u1-1)*k^2 - (3*D1+u1-3)*k - 2*(D1-1)*(u1-1)

numerator *= lastPart

denominator = 1

(k+u1-2)..(k+D1-3)

for n in [(k+u1-D2)..(k+D1-D2-1)]:

denominator *= n

(2k+D1-2)..(2k+u1-1)

for n in [(2*k+D1-D2)..(2*k+u1-1)]:

denominator *= n

return numerator / denominator

(D1,3,0) -> (u1,0,0) #old name: formula2_3

def formula6(lam, u):

D1,D2 = lam[0],lam[1]

u1,u2,u3 = u

#Case 1: D1-u1==0

if D1-u1==0:

return (-1)^D2 * fac(D2-1)

#Case 2: D1-u1>0

numerator = (-1)^(D1-u1) * fac(D1-D2) / fac(u1) * k*(k-1) * fac(D2-1)

(2*k+u1)..(2*k+D1-4)

for n in [(2*k+u1)..(2*k+D1-D2-1)]:

numerator *= n

lastPart = (D1-u1-2)*(D1-u1-1)/2 * k^4

lastPart += -4*(D1-u1-1)*(2*D1+u1-4)/2 * k^3

36

lastPart += +((6*D1-7)*u1^2+ (-6*D1^2+ 14*D1-9)*u1+ 23*(D1-2)*(D1-1))/2 * k^2

lastPart += +((6*D1-10)*u1^2+ (18*D1^2-64*D1+ 54)*u1-28*(D1-2)*(D1-1))/2 * k

lastPart += +6*(u1-2)*(u1-1)*(D1-2)*(D1-1)/2

numerator *= lastPart

denominator = 1

(k+u1-3)..(k+D1-4)

for n in [(k+u1-D2)..(k+D1-D2-1)]:

denominator *= n

(2k+D1-3)..(2k+u1-1)

for n in [(2*k+D1-D2)..(2*k+u1-1)]:

denominator *= n

return numerator / denominator

Since formula3: (D1,D2,0) -> (u1,u2,0) has many conditions, we leave it out here

we will write it here after we have a full formula for it

#==

def CheckFormulas(lam, u):

D1,D2,D3 = lam

u1,u2,u3 = u

if D3>0:

return None

(D1,D2,0) -> u

if D2 > 0:

if u2>0:

return None #(we only have formulas for ())

if D2==1:

return formula4(lam,u) #(D1,1,0) -> (u1,0,0)

elif D2==2:

return formula5(lam,u) #(D1,2,0) -> (u1,0,0)

elif D2==3:

return formula6(lam,u) #(D1,3,0) -> (u1,0,0)

(D1,0,0) -> u

else: #D2==0:

if u3>0:

return formula1(lam,u) #(D1,D2,0) -> (u1,u2,u3)

elif u2>0:

37

return formula2(lam,u) #(D1,D2,0) -> (u1,u2,0)

else:

return formula3(lam,u) #(D1,D2,0) -> (u1,0,0)

return None

#Main code to check formulas

D2 = 0

for D in [D2..13]:

lam = (D,D2,0)

print "-----------------lam=",lam,"---------------"

P = getAnswer(lam, False)

for (coef, u) in getLinearComb(P):

for (coef, u) in tripleDict[lam]:

D,D2,D3 = lam

u1,u2,u3=u

conjCoef = CheckFormulas(lam, u)

print coef==conjCoef

if coef!=conjCoef:

print("***coef =", coef, ", u = ", u)

print("conjCoef =", conjCoef, ", u = ", u)

38

	Executive Summary
	Background
	Theoretical Motivations
	Combinatorial Algorithm
	Lie algebras

	Research Outcomes
	Which P Appear
	Observation on (D1,D2,D3)
	Formulae for = (D,0,0)
	Partial Formulae for = (D1,D2,0)
	Generalization to n-variable Case

	Methods
	Computer Code
	Techniques to Obtain Conjectures

	Future Plans
	Acknowledgements
	Appendix: Code
	Code to Generate Polynomials
	Code to Get the Linear Combinations
	Other Helper Functions
	Code to Check Conjectures

