Interpolation Jack Polynomials

Group 2: Havi Ellers and Xiaomin Li
Mentor: Dr. Hadi Salmasian

Fields Institute for Research in Mathematical Sciences
August 28, 2019

Outline

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these
formulae?
Additional Remarks

Future Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time
(6) Future Directions

Outline

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Interpolation Jack
Polynomials
Our Goal
Results!
Our Code
How did we
find these
formulae?
Additional
Remarks
Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time

6) Future Directions

Interpolation Jack Polynomials

Example: when $n=3$
The interpolation Jack polynomial associated with the partition $\lambda=(2,0,0)$ is

$$
\begin{aligned}
P_{\lambda}(x, y, z) & =x^{2}+y^{2}+z^{2}+\left(\frac{2 k}{k+1}\right) x y+\left(\frac{2 k}{k+1}\right) y z \\
& +\left(\frac{2 k}{k+1}\right) x z-x-\left(\frac{3 k+1}{k+1}\right) y-\left(\frac{5 k+1}{k+1}\right) z
\end{aligned}
$$

Interpolation Jack polynomials are certain polynomials P_{λ}, indexed by partitions λ, in n variables x_{1}, \ldots, x_{n} and with coefficients in the field $\mathbb{Q}(k)$.

Interpolation Jack Polynomials

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Interpolation Jack Polynomials Our Goal

Results!
Our Code
How did we
find these
formulae?
Additional
Remarks
Future
Directions

Where do these polynomials come from?

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{T \text { a reverse } \\ \text { tableau } \\ \text { of shape } \lambda}} \psi_{T}(k) \prod_{s \in T}\left(x_{T(s)}-a^{\prime}(s)+l^{\prime}(s) k\right)
$$

Interpolation Jack Polynomials

Why are these polynomials interesting?

- If you set $k=1$, you get a factorial Schur polynomial.
- The highest degree homogeneous part of a factorial Schur polynomial is a regular Schur polynomial.
- The Schur polynomial associated with the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is defined to be

$$
S_{\lambda}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)}{\operatorname{det}\left(x_{i}^{n-j}\right)}
$$

These are well-studied polynomials and have connections to the representation theory of $\mathrm{gl}(n, \mathbb{C})$.

Our Goal

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

The Setup
Interpolation
Jack
Polynomials
Our Goal
Results!
Our Code
How did we
find these
formulae?
Additional Remarks

Future
Directions

Our Goal:

We would like to find rational functions of $k, c_{\mu}^{\lambda}(k)$, such that

$$
\frac{\partial}{\partial k} P_{\lambda}(x, y, z)=\sum_{\mu} c_{\mu}^{\lambda}(k) P_{\mu}(x, y, z)
$$

where the sum ranges all partitions μ such that $|\mu| \leq|\lambda|$.

Example

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr.

Hadi
Salmasian

The Setup
Interpolation
Jack
Polynomials
Our Goal
Results!
Our Code
How did we
find these
formulae?
Additional
Remarks

Future

Directions

For $\lambda=(2,0,0)$ we can write:

$$
\begin{aligned}
\frac{\partial}{\partial k} P_{(2,0,0)}= & \left(\frac{5 k+3}{k+1}\right) P_{(0,0,0)}+\left(\frac{-6 k-4}{k+1}\right) P_{(1,0,0)} \\
& +\left(\frac{2}{k^{2}+2 k+1}\right) P_{(1,1,0)}
\end{aligned}
$$

Outline

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
$\left(D_{1}, D_{2}, D_{3}\right)$
The Case
$\lambda=\left(D_{1}, 0,0\right)$
The Case λ
Our Code
How did we
find these
formulae?
Additional
Remarks
Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time
(6) Future Directions

The Case $\lambda=(0,0,0)$

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr

Hadi
Salmasian

The Setup
Results!
The Gase λ
$\left(D_{1}, D_{2}, D_{3}\right)$
The Case $\lambda=\left(D_{1}, 0,0\right)$
The Case λ
Our Code
How did we
find these
formulae?
Additional
Remarks

Future

Directions

If $\lambda=(0,0,0)$ then $\frac{\partial}{\partial k} P_{\lambda}=0$, so all coefficients are zero.

The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$

Group 2: Hav
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup

Results!

The Case $\lambda=$ (D_{1}, D_{2}, D_{3}) The Case $\lambda=\left(D_{1}, 0,0\right)$
The Case λ
$\left(D_{1}, D_{2}, 0\right)$
Our Code
How did we
find these
formulae?
Additional Remarks

Future
Directions

$$
\lambda=\left(D_{1}, D_{2}, D_{3}\right)
$$

$$
\text { If } \lambda=\left(D_{1}, D_{2}, D_{3}\right) \text { where } D_{1}, D_{2}, D_{3} \neq 0 \text {, then }
$$

$$
c_{\left(\mu_{1}, \mu_{2}, \mu_{3}\right)}^{\left(D_{1}, D_{2}, D_{3}\right)}= \begin{cases}0 & \text { if } \mu_{3}-D_{3}<0 \\ c_{\left(\mu_{1}-D_{3}, \mu_{2}-D_{3}, \mu_{3}-D_{3}\right)}^{\left(D_{1}-D_{3}, D_{2}-D_{3}, 0\right)} & \text { otherwise }\end{cases}
$$

So we only need to look at λ with at most two non-zero parts!

The Case $\lambda=\left(D_{1}, 0,0\right)$

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
(ν_{1}, D_{2},
$\lambda=\left(D_{1}, 0,0\right)$
The Case λ
$\left(D_{1}, D_{2}, 0\right)$
Our Code
How did we
find these
formulae?
Additional
Remarks

Future

Directions

For $\lambda=\left(D_{1}, 0,0\right)$:

- Complete characterization!
- Formula for the coefficient of P_{μ} depends on the number of non-zero parts in μ.

Falling Factorial

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr
Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
The Case
$\lambda=\left(D_{1}, 0,0\right)$
The Case λ
$\left(D_{1}, D_{2}, 0\right)$
Our Code
How did we
find these
formulae?
Additional Remarks

Future
Directions

Notational note: Since the formulae often involve products of consecutive terms, we give the following definition to make the formulae more succinct.

Falling Factorial

Define the falling factorial notation for $b>0$:

$$
a^{\bar{b}}:=(a+0)(a+1) \cdots(a+b-1)
$$

Remark:

- In our research, a is often a polynomial of k, such as $k+\mu_{1}, 2 k+\mu_{1}$, etc.
- Notice that a is the "start" of the consecutive product, and b is the number of terms in this product.

Example:

$$
\left(2 k+\mu_{1}\right)^{\overline{D-\mu_{1}}}:=\left(2 k+\mu_{1}\right)\left(2 k+\mu_{1}+1\right) \cdots(2 k+D-1)
$$

The Case $\lambda=\left(D_{1}, 0,0\right)$

Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
The Case
$\lambda=\left(D_{1}, 0,0\right)$
The Case $\lambda=$
$\left(D_{1}, D_{2}, 0\right)$
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Formula 1: Conjecture for the coefficient of ($\mu_{1}, 0,0$) in ($D_{1}, 0,0$), where $\mu_{1} \geq 0$:

$$
\frac{(-1)^{D_{1}-\mu_{1}} \cdot \frac{D_{1}!}{\left(D_{1}-\mu_{1}\right) \mu_{1}!} \times\left[\left(2 k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}+\left(k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}\right]}{\left(k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}}}}
$$

Formula 2: Conjecture for the coefficient of $\left(\mu_{1}, \mu_{2}, 0\right)$ in ($D_{1}, 0,0$), where $\mu_{1}, \mu_{2}>0$:

$$
\frac{(-1)^{D_{1}-\mu_{1}+\mu_{2}} \cdot \frac{D_{1}!\left(D_{1}-\mu_{1}-1\right)!}{\left(D_{1}-\mu_{1}-\mu_{2}\right)!\left(\mu_{1}-\mu_{2}\right)!\mu_{2}!}}{\left(k+\mu_{1}-\mu_{2}+1\right)^{\overline{\mu_{2}}} \cdot\left(k+D_{1}-\mu_{2}\right)^{\mu_{2}}}
$$

The Case $\lambda=\left(D_{1}, 0,0\right)$

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup

Results!

The Case $\lambda=$
$\left(D_{1}, D_{2}, D_{3}\right.$
The Case $\lambda=\left(D_{1}, 0,0\right)$ The Case λ $\left(D_{1}, D_{2}, 0\right)$

Our Code
How did we
find these formulae?

Additional Remarks

Future

Directions

Formula 3: Conjecture for the coefficient of $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ in $\left(D_{1}, 0,0\right)$, where $\mu_{1}, \mu_{2}, \mu_{3}>0$:

$$
\frac{(-1)^{D_{1}-\mu_{1}+\mu_{2}} \cdot \frac{D_{1}!\left(\mu_{2}-1\right)!}{\left(\mu_{1}-\mu_{2}\right)!\left(\mu_{2}-\mu_{3}\right)!\left(\mu_{3}\right)!}\left(k-\mu_{3}+1\right)^{\overline{\mu_{3}}} \cdot\left(k+\mu_{1}-\mu_{3}+1\right)^{\overline{\mu_{3}-1}} \times S}{\left(k+\mu_{1}-\mu_{2}+1\right)^{\overline{D_{1}-\mu_{1}+\mu_{2}-1}} \cdot\left(k+\mu_{2}-\mu_{3}+1\right)^{\overline{\mu_{3}}} \cdot\left(2 k+\mu_{1}-\mu_{3}+1\right)^{\overline{\mu_{3}}}}
$$

where S is

$$
\sum_{j=0}^{\substack{D_{1}-\mu_{1} \\-\mu_{2}-\mu_{3}}}\binom{D_{1}-\mu_{1}-\mu_{2}-1-j}{\mu_{3}-1}\binom{j+\mu_{2}-1}{\mu_{2}-1}\left(2 k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}-\mu_{2}-\mu_{3}-j}} \cdot\left(k+D_{1}-\mu_{2}-j\right)^{\bar{j}}
$$

The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Hadi
Salmasian

The Setup
Results!
The Gase
(D_{1}, D_{2}, D_{3})
The Case
The Case $\lambda=$
$\left(D_{1}, D_{2}, 0\right)$
Our Code
How did we
find these
formulae?
Additional
Remarks

Future

Directions

For $\lambda=\left(D_{1}, D_{2}, 0\right)$:

- Partial characterization.
- Formula for the coefficient of P_{μ} depends on the number of non-zero parts in μ.

The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
(D_{1}, D_{2}, D_{3})
The Case
$\lambda=\left(D_{1}, 0,0\right)$
The Case $\lambda=$ $\left(D_{1}, D_{2}, 0\right)$

Our Code
How did we
find these
formulae?
Additional Remarks

Formula 4: Conjecture for the coefficient of $\left(\mu_{1}, 0,0\right)$ in $\left(D_{1}, D_{2}, 0\right)$:
If $D_{1}-\mu_{1}>0$:

$$
\frac{(-1)^{D_{1}-\mu_{1}}\left[\frac{\left(D_{1}-D_{2}\right)!}{\mu_{1}!}\right]\left[\left(D_{2}-1\right)!\right][(k-1)(k)]\left[\left(2 k+\mu_{1}\right)^{\overline{D_{1}-\mu_{1}-D_{2}}}\right] \cdot S}{\left(k+\mu_{1}-D_{2}\right)^{\overline{D_{1}-\mu_{1}}} \cdot\left(2 k+D_{1}-D_{2}\right)^{\overline{D_{2}-\left(D_{1}-\mu_{1}\right)}}}
$$

where S is a polynomial of degree $2\left(D_{2}-1\right)$ with:

$$
\text { leading term }=\binom{D_{1}-\mu_{1}-1}{D_{2}-1} k^{2\left(D_{2}-1\right)}
$$

constant term $=(-1)_{2}^{D_{2}-1} \cdot\left(\mu_{1}-D_{2}+1\right)^{\overline{D_{2}-1}} \cdot\left(D_{1}-D_{2}+1\right)^{\overline{D_{2}-1}}$
If $D_{1}-\mu_{1}=0$:

$$
(-1)^{D_{2}} \cdot\left(D_{2}-1\right)!
$$

The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr

Hadi
Salmasian

The Setup
Results!
The Case $\lambda=$
(D_{1}, D_{2}, D_{3})
The Case
The Case $\lambda=$
($D_{1}, D_{2}, 0$)
Our Code
How did we
find these
formulae?
Additional Remarks

Future

Directions

Formula 5: Conjecture for the coefficient of $\left(\mu_{1}, \mu_{2}, 0\right)$ in $\left(D_{1}, D_{2}, 0\right)$ where $\mu_{1}, \mu_{2}>0$:
If $\mu_{2}>D_{2}$:

$$
\frac{(-1)^{D_{1}+D_{2}-\mu_{1}+\mu_{2}} \cdot \frac{\left(D_{1}-D_{2}\right)!\left(D_{1}-\mu_{1}-1\right)!}{\left(\mu_{1}-\mu_{2}\right)!\left(\mu_{2}-D_{2}\right)!\left(D_{1}+D_{2}-\mu_{1}-\mu_{2}\right)!}}{\left(k+\mu_{1}-\mu_{2}+1\right)^{\overline{\mu_{2}-D_{2}}} \cdot\left(k+D_{1}-\mu_{2}\right)^{\mu_{2}-D_{2}}}
$$

Outline

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
Our Code
The Polynomials
The Linear Combination Bugs!

How did we find these formulae?

Additional
Remarks
Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time
(6) Future Directions

Overview

We wrote all our code in Sagemath, occasionally suplemented by mathematica. There were three main parts of our code:

- Generating the polynomials
- Construction of polynomials is completely algorithmic
- Main function "getAnswer(λ, plot)" outputs the polynomial for λ.
- Computing the linear combination
- Also algorithmic
- Main function "getLinearComb $\left(P_{\lambda}\right)$ " outputs the linear combination for $\frac{\partial}{\partial k} P_{\lambda}$
- Various helper functions to help us find the formulae

The Polynomials

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

Step 1: Generate the polynomials
Main function is a nested function of about 25 auxiliary functions. We used tuples to represent partitions and lists of lists to represent tableaux.

- fill(tList, unfilledPositions, allFilledLists): Pop one box from "unfilledPositions", call fillEntry() to fill this box with one of 1,2 , or 3 (if possible) and recurse.
- getAllReverseT(allLambda): Return tableaux of all possible reverse fillings of shape "allLambda".
- getPHelper(allFilledLists, plot): Return final polynomial P_{λ} by adding the polynomials for all reverse fillings in "allFilledLists".
- getAnswer(allLambda, plot): Given a valid partition "allLambda" $=\lambda=\left(D_{1}, D_{2}, D_{3}\right)$, return the polynomial P_{λ} by calling getPHelper().

The Linear Combination

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr Hadi
Salmasian

The Setup
Results!
Our Code
The Polynomials
The Linear Combination
Bugs!
How did we find these formulae?

Additional Remarks

Future Directions

Step 2: Compute the linear combination
 Pseudo Code for getLinearComb(P):

```
Algorithm 1 Get the Linear Combination for \(\frac{\partial}{\partial k} P_{\lambda}\)
    1: \(d P \leftarrow\) partial derivative of \(P_{\lambda}\) with respect to \(k\)
    linComb \(=\emptyset\)
    while \(d P \neq 0\) do
        \(l m \leftarrow\) leading monomial of \(d P\)
        \(l c \leftarrow\) leading coefficient of \(d P\)
        \(u 1, u 2, u 3 \leftarrow\) degree of \(x, y, z\) in Im respectively
        \(P u \leftarrow\) get \(P u\) for \(u=(u 1, u 2, u 3)\)
        PuCoef \(\leftarrow\) coefficient of Im in Pu
        coef \(=\) (lc / PuCoef)
        \(d P \leftarrow d P-\operatorname{coef} * P u\)
    12 :
    13: linComb.append(coef, ( \(u 1, u 2, u 3)\) )
        return linComb
```


Bugs! (I.e. Comedic Relief)

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

The Setup
Results!
Our Code
The Polynomials
The Linear Combination Bugs!

How did we find these formulae?

Additional Remarks
(1) With our first version of code, this algorithm never terminated! Fix:

$$
P_{\lambda}=\sum_{T} \prod_{s \in T} \psi_{T}(k)(\ldots) \quad \rightarrow \quad P_{\lambda}=\sum_{T} \psi_{T}(k) \prod_{s \in T}(\ldots)
$$

(2) Then we thought every linear combination contained at most 41 polynomials!
\rightarrow Our code had been written to terminate after 40 steps.

Outline

Interpolation Jack Polynomials

Group 2: Havi Ellers and Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time
(6) Future Directions

Split Into Cases

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

 DirectionsTechnique 1: Split into cases.
Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-(k-1) \\
& (3,1,0) \rightarrow \frac{2(k-1)(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-12(k-1)(2 k+1)}{k+2} \\
& (5,1,0) \rightarrow \frac{48(k-1)(2 k+1)(2 k+3)}{(k+3)(k+2)} \\
& (6,1,0) \rightarrow \frac{-480(k-1)(2 k+1)(2 k+3)}{(k+4)(k+3)}
\end{aligned}
$$

Notice Common Factors

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Technique 2: Notice common factors.
Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-(k-1) \\
& (3,1,0) \rightarrow \frac{2(k-1)(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-12(k-1)(2 k+1)}{k+2} \\
& (5,1,0) \rightarrow \frac{48(k-1)(2 k+1)(2 k+3)}{(k+3)(k+2)} \\
& (6,1,0) \rightarrow \frac{-480(k-1)(2 k+1)(2 k+3)}{(k+4)(k+3)}
\end{aligned}
$$

Get Rid of Common Factors

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional
Remarks

Future

Directions

Technique 2: Notice common factors.
Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1 \\
& (3,1,0) \rightarrow \frac{2(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-12(2 k+1)}{k+2} \\
& (5,1,0) \rightarrow \frac{48(2 k+1)(2 k+3)}{(k+3)(k+2)} \\
& (6,1,0) \rightarrow \frac{-480(2 k+1)(2 k+3)}{(k+4)(k+3)}
\end{aligned}
$$

Add Factors to Numerator and Denominator

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Technique 3: Add factors to numerator and denominator Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1 \\
& (3,1,0) \rightarrow \frac{2(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-12(2 k+1)(k+1)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{48(2 k+1)(2 k+3)(k+1)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-480(2 k+1)(2 k+3)(k+2)(k+1)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Look at Constant Factor

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Technique 4: Look at constant factor Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1 \\
& (3,1,0) \rightarrow \frac{2(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-2 \cdot 6(2 k+1)(k+1)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{2 \cdot 24(2 k+1)(2 k+3)(k+1)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-2 \cdot 2 \cdot 120(2 k+1)(2 k+3)(k+2)(k+1)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Look at Constant Factor

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Technique 4: Look at constant factor Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1 \\
& (3,1,0) \rightarrow \frac{2(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-6(2 k+1)(2 k+2)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{24(2 k+1)(2 k+2)(2 k+3)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-120(2 k+1)(2 k+2)(2 k+3)(2 k+4)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Look at Constant Factor

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Technique 4: Look at constant factor Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1 \\
& (3,1,0) \rightarrow \frac{2(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-6(2 k+1)(2 k+2)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{24(2 k+1)(2 k+3)(2 k+2)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-120(2 k+1)(2 k+3)(2 k+4)(2 k+2)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Look at Constant Factor

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Technique 4: Look at constant factor Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1! \\
& (3,1,0) \rightarrow \frac{2!(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-3!(2 k+1)(2 k+2)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{4!(2 k+1)(2 k+2)(2 k+3)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-5!(2 k+1)(2 k+2)(2 k+3)(2 k+4)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Look at Constant Factor

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Technique 4: Look at constant factor Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
\begin{aligned}
& (2,1,0) \rightarrow-1! \\
& (3,1,0) \rightarrow \frac{2!(2 k+1)}{k+1} \\
& (4,1,0) \rightarrow \frac{-3!(2 k+1)(2 k+2)}{(k+2)(k+1)} \\
& (5,1,0) \rightarrow \frac{4!(2 k+1)(2 k+2)(2 k+3)}{(k+3)(k+2)(k+1)} \\
& (6,1,0) \rightarrow \frac{-5!(2 k+1)(2 k+2)(2 k+3)(2 k+4)}{(k+4)(k+3)(k+2)(k+1)}
\end{aligned}
$$

Notice Pattern!

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr
Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future

Directions

Notice pattern!

Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
(D, 1,0) \rightarrow \frac{(-1)^{D-1}(D-1)![(2 k+1) \cdots(2 k+D-2)]}{(k+1) \cdots(k+D-2)}
$$

Doesn't work for $(2,1,0) \rightarrow$ Multiply by $\frac{k}{k}$:

$$
(D, 1,0) \rightarrow \frac{(-1)^{D-1}(D-1)![k][(2 k+1) \cdots(2 k+D-2)]}{(k) \cdots(k+D-2)}
$$

Add Back in Divided Factors

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional
Remarks
Future
Directions

Final step: Add back in divided factors Example: Coefficient of $(1,0,0)$ in $(D, 1,0)$:

$$
(D, 1,0) \rightarrow \frac{(-1)^{D-1}(D-1)![(k)(k-1)][(2 k+1) \cdots(2 k+D-2)]}{(k) \cdots(k+D-2)}
$$

Pascal's Identity and Binomial Coefficients

Technique 4: Pascal's Identity and Binomial Coefficients Example:
Coefficients of $\left(D-i, \mu_{2}, \mu_{3}\right)$ in $(D, 0,0)\left(\mu_{2}, \mu_{3}>0\right)$. Fix $\mu_{3}=1$. Write the leading coefficient as a function $f\left(\mu_{2}, i\right)$ depending on i and μ_{2}.

	$i=2$	$i=3$	$i=4$	$i=5$	$i=6$	$i=7$	$i=8$	$i=9$	\ldots
$D-i, 1,1$	1	$3 k$	$7 k^{2}$	$15 k^{3}$	$31 k^{4}$	$63 k^{5}$	$127 k^{6}$	$255 k^{7}$	\ldots
$D-i, 2,1$		1	$4 k$	$11 k^{2}$	$26 k^{3}$	$57 k^{4}$	$120 k^{5}$	$247 k^{6}$	\ldots
$D-i, 3,1$			1	$5 k$	$16 k^{2}$	$42 k^{3}$	$99 k^{4}$	$219 k^{5}$	\ldots
\ldots									

Pascal's Identity and Binomial Coefficients

If we look at the first two rows of the table above, notice $3+1=4,7+4=11,15+11=26,31+26=57, \ldots$ The key observation is that

$$
f\left(\mu_{2}, i\right)=f\left(\mu_{2}, i-1\right)+f\left(\mu_{2}-1, i-1\right) .
$$

This should remind us of Pascal's identity

$$
\binom{n}{k}=\binom{n}{k-1}+\binom{n-1}{k-1} .
$$

Moreover, the leading coefficients of the first row has a clear pattern: $2^{i-1}-1$. Using this as an initial condition and the recursive formula above, we could write out the formula for $f\left(\mu_{2}, i\right)$ as a function of i for each fixed μ_{2}.

Pascal's Identity and Binomial Coefficients

Interpolation Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Using the pattern $2^{i-1}-1$, we first conjecture:

$$
(2 k+\ldots) \cdots(2 k+\ldots)-(k+\ldots) \cdots(k+\ldots)
$$

However, it does not work! Later we apply the formula for geometric sum:

$$
\begin{aligned}
& 2^{i-1}-1 \\
= & 2^{i-2}+2^{i-3}+\cdots+2^{1}+2^{0}
\end{aligned}
$$

and change the conjecture to be:

$$
\sum_{j=0}^{i-2}(2 k+\ldots)^{\overline{(i-2)-j}}
$$

Finally we conjecture the unfactored part of coefficient of $\left(D-i, \mu_{2}, \mu_{3}\right)$ in $(D, 0,0)\left(\mu_{2}, \mu_{3}>0\right)$: $\sum_{j=0}^{D-\mu_{1}-\mu_{2}-\mu_{3}}\binom{D-\mu_{1}-\mu_{2}-1-j}{\mu_{3}-1}\binom{j+\mu_{2}-1}{\mu_{2}-1}\left(2 k+\mu_{1}\right)^{D-\mu_{1}-\mu_{2}-\mu_{3}-j} \cdot\left(k+D-\mu_{2}-j\right)^{\bar{T}}$

Outline

Interpolation Jack
Polynomials
Group 2: Havi Ellers and
Xiaomin Li Mentor: Dr. Hadi
Salmasian

The Setup
Results!
Our Code
How did we find these
formulae?
Additional
Remarks
Slow Run Time
Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time

6) Future Directions

Slow Run Time

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr.
Hadi
Salmasian

The Setup
Results!
Our Code
How did we
find these
formulae?
Additional
Remarks
Slow Run Time
Future
Directions

Slow run time was a problem...

Storing polynomials and linear combinations helps a bit, but run time is still noticeable.

Example: To check the conjecture for $P_{(31,0,0)}$ took 14 hours, and as D increases the run time increases.

Outline

Interpolation Jack Polynomials

Group 2: Havi Ellers and Xiaomin Li Mentor: Dr Hadi Salmasian

The Setup
Results!
Our Code
How did we find these formulae?

Additional Remarks

Future
Directions
(1) The Setup

- Interpolation Jack Polynomials
- Our Goal
(2) Results!
- The Case $\lambda=\left(D_{1}, D_{2}, D_{3}\right)$
- The Case $\lambda=\left(D_{1}, 0,0\right)$
- The Case $\lambda=\left(D_{1}, D_{2}, 0\right)$
(3) Our Code
- The Polynomials
- The Linear Combination
- Bugs!
(4) How did we find these formulae?
(5) Additional Remarks
- Slow Run Time
(6) Future Directions

Future Directions

Interpolation
Jack
Polynomials
Group 2: Havi
Ellers and
Xiaomin Li
Mentor: Dr
Hadi
Salmasian

The Setup
Results!
Our Code
How did we
find these
formulae?
Additional
Remarks
Future
Directions

Future Directions:

- Complete the cases where we only have partial formulae.
- Try to prove our conjectures.
- Try to generalize to n variable case!

Thank you!

We would like to thank the Fields Institute for admitting us to this program to do research, and Professor Salmasian for mentoring us throughout the summer.

