Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related
Theorems
Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré
Series
A Useful
Proposition
Bounding $T_{d}(J)$

Effective Bounds for Traces of Singular Moduli

Havi Ellers Meagan Kenney

Research Advisor:
Riad Masri

July 16, 2018

DMS-1757872

Thank you

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related
Theorems
Zagier
Duke
A Result
Statement of Resuit Comparison

We would like thank Riad Masri for his guidance and advice while conducting this research. We would also like to thank Texas A\&M's Department of Mathematics for their hospitality during this summer of research. And lastly we would like to thank the NSF for supporting us in this incredible opportunity to learn and directly interact with beautiful math.

Outline

Effective Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related
Theorems
Zagier
Duke
A Result
Statement of Resuit
Comparison
A Proof of the Result
Reduced Forms
The Poincaré Series
A Useful
Proposition Bounding $T_{r_{d}}(J)$
(1) Definitions
(2) Related Theorems

- Zagier
- Duke
(3) A Result
- Statement of Result
- Comparison
(4) A Proof of the Result
- Reduced Forms
- The Poincaré Series
- A Useful Proposition
- Bounding $\operatorname{Tr}_{d}(J)$

The upper half plane and modular group

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

- Let \mathbb{H} denote the complex upper half plane.
- Let $\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$
- $S L_{2}(\mathbb{Z})$ acts on \mathbb{H} by linear fractional transformations: If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $z \in \mathbb{H}$, then the group action is defined by

$$
\gamma(z)=\frac{a z+b}{c z+d} .
$$

The J-function

- The classical modular j-function is defined as

$$
j(z):=e(-z)+744+\sum_{n>0} a(n) e(n z), \quad z \in \mathbb{H}
$$

where $e(z):=e^{2 \pi i z}$ and $a(n) \in \mathbb{Z}$ is a Fourier coefficient for which an explicit formula can be found.

- Define $J(z):=j(z)-744$.
- Note that

$$
J(\gamma z)=J(z)
$$

for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ and $z \in \mathbb{H}$, and so J is an automorphic function.

Binary Quadratic Forms

Effective

- Let Q_{d} be the set of primitive, positive-definite, integral, binary quadratic forms

$$
Q(x, y)=\left[a_{Q}, b_{Q}, c_{Q}\right]=a_{Q} x^{2}+b_{Q} x y+c_{Q} y^{2}
$$

with discriminant $d=b_{Q}^{2}-4 a_{Q} c_{Q}<0$.

- There is a right action of $\mathrm{SL}_{2}(\mathbb{Z})$ on Q_{d} given by

$$
Q \circ M(x, y)=Q(\alpha x+\beta y, \gamma x+\delta y)
$$

where $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.

The Class Number

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related

Theorems
Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result

- The quotient $Q_{d} / \mathrm{SL}_{2}(\mathbb{Z})$ is finite. Let

$$
h(d):=\left|Q_{d} / \mathrm{SL}_{2}(\mathbb{Z})\right|
$$

be the class number of d.

Theorem (Siegel)
For all $\epsilon>0$ there exists a constant $C(\epsilon)>0$ such that

$$
h(d) \geq C(\epsilon)|d|^{\frac{1}{2}+\epsilon} .
$$

Singular Moduli

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related

Theorems
Zagier
Duke
A Result
Statement of Result Comparison
A Proof of the Result

- We are interested in evaluating the J-function at certain distinguished algebraic integers.
- A CM point is the root of $Q(x, 1)$ in \mathbb{H} given by

$$
\tau_{Q}=\frac{-b_{Q}+i \sqrt{|d|}}{2 a_{Q}}
$$

- The values $J\left(\tau_{Q}\right)$ are algebraic numbers called singular moduli.

Traces of singular moduli

Effective Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related
Theorems
Zagier
Duke
A Result

- We define the trace of singular moduli by:

$$
\operatorname{Tr}_{d}(J):=\sum_{[Q] \in Q_{d} / \mathrm{SL}_{2}(\mathbb{Z})} J\left(\tau_{Q}\right) .
$$

- The trace is well defined because if $\left[Q_{1}\right]=\left[Q_{2}\right]$, then $\gamma \tau_{Q_{1}}=\tau_{Q_{2}}$ for some $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, and J is automorphic.

Zagier's generating function

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related

Theorems

Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result

- Let

$$
g_{Z a g}(z):=e(-z|d|)+\sum_{d \equiv 0,1} \operatorname{Tr}_{(\bmod 4)}(J) e(z|d|) .
$$

- A remarkable theorem of Zagier asserts that $g_{Z a g}(z)$ is a weakly holomorphic modular form of weight $3 / 2$ for $\Gamma_{0}(4)$.

Importance

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related

- Zagier's theorem tells us that using traces of singular moduli, we can construct a new weakly holomorphic modular form of a different weight.
- A problem of central importance in number theory is to bound Fourier coefficients of modular forms.
- As a consequence of our main theorem, we will give effective bounds for the Fourier coefficients of $g_{Z a g}(z)$.

A Theorem of Duke

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related

Theorems
Zagier

Duke

A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré
Series
A Useful
Proposition Bounding $\pi_{r_{d}}(J)$

Theorem (Duke, 2006)

There is an absolute constant $\delta>0$ such that

$$
\operatorname{Tr}_{d}(J)=\sum_{\substack{[Q] \in Q_{d} / S L_{2}(\mathbb{Z}) \\ \operatorname{Im}\left(\tau_{Q}\right)>1}} e\left(-\tau_{Q}\right)-24 h(d)+\mathcal{O}\left(|d|^{\frac{1}{2}-\delta}\right) .
$$

A Theorem of Duke

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related
Theorems

- Note that $\frac{\mathcal{O}\left(|d|^{\frac{1}{2}-\delta}\right)}{h(d)} \rightarrow 0$ as $|d| \rightarrow \infty$ by Siegel's Theorem.
- Thus Duke's theorem implies that

$$
\frac{\operatorname{Tr}_{d}(J)-\sum_{\substack{[Q] \in Q_{d} / S L_{2}(\mathbb{Z}) \\ \operatorname{Im}\left(\tau_{Q}\right)>1}} e\left(-\tau_{Q}\right)}{h(d)} \rightarrow-24
$$

as $|d| \rightarrow \infty$. This confirmed a conjecture of Bruinier, Jenkins, and Ono.

Special case of our Main Theorem

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related

Theorems

Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré
Series
A Useful

Proposition

 Bounding $T_{d}(J)$
Theorem

$$
\operatorname{Tr}_{d}(J)=\sum_{\substack{[Q] \in Q_{d} / S L_{2}(\mathbb{Z}) \\ \operatorname{Im}\left(\tau_{Q}\right)>1}} e\left(-\tau_{Q}\right)-24 h(d)+E(d)
$$

where

$$
|E(d)| \leq\left(1.72 \times 10^{6}\right) h(d)
$$

A corollary

Effective Bounds for Traces of Singular Moduli Ellers and Kenney

Definitions

Related
Theorems
Zagier
Duke

$$
\left|\operatorname{Tr}_{d}(J)\right| \leq e^{\pi \sqrt{|d|}}\left(1.72 \times 10^{6}\right) h(d)
$$

Corollary

Comparison with Duke's Theorem

- Duke proved that

$$
\operatorname{Tr}_{d}(J)-\sum_{\substack{[Q] \in Q_{d} / S L_{2}(\mathbb{Z}) \\ \operatorname{Im}\left(\tau_{Q}\right)>1}} e\left(-\tau_{Q}\right)
$$

converges by saving a power of d in the error term over the "trivial" bound $h(d) \ll \log (|d|) \sqrt{|d|}$.

- However because of the methods involved in Duke's proof, one cannot practically compute the implied constant in his error term.
- Therefore we require a new method for our main theorem.

Reduced forms

Effective

- The fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$ acting on \mathbb{H} is the region

$$
\begin{aligned}
& \mathcal{F}:=\left\{z \in \mathbb{C}| | z \mid>1 \text { and }-\frac{1}{2} \leq \operatorname{Re}(z)<\frac{1}{2}\right\} \\
& \cup\left\{z \in \mathbb{C}\left|-\frac{1}{2} \leq \operatorname{Re}(z) \leq 0,|z|=1\right\}\right.
\end{aligned}
$$

- A form Q is said to be reduced if its CM point lies in \mathcal{F}.
- Each $[Q] \in Q_{d} / \mathrm{SL}_{2}(\mathbb{Z})$ contains a unique reduced form.

Summing over reduced forms

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related

Theorems

Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result

- Let $Q_{1}, \ldots, Q_{h(d)}$ be the set of reduced forms representing the equivalence classes in $Q_{d} / \mathrm{SL}_{2}(\mathbb{Z})$.
- We can sum over $Q_{1}, \ldots, Q_{h(d)}$ in the trace of $J(z)$:

$$
\operatorname{Tr}_{d}(J)=\sum_{i=1}^{h(d)} J\left(\tau_{Q_{i}}\right)
$$

The Poincaré series

Effective

- For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ and $z \in \mathbb{H}$, define the Maass-Poincaré series

$$
F(z, s):=2 \pi \sum_{\gamma \in \Gamma_{\infty} \backslash S L_{2}(\mathbb{Z})} \operatorname{Im}(\gamma z)^{\frac{1}{2}} I_{s-\frac{1}{2}}(2 \pi \operatorname{Im}(\gamma z)) e(-\operatorname{Re}(\gamma z))
$$

- I_{ν} is the I Bessel function of order ν.
- And

$$
\Gamma_{\infty}:=\left\{\left. \pm\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \right\rvert\, n \in \mathbb{Z}^{+} \cup\{0\}\right\}
$$

is the subset of $\mathrm{SL}_{2}(\mathbb{Z})$ that stabilizes the cusp at infinity.

Proposition

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related
Theorems
Zagier
Duke
A Result
Statement of Result

Comparison

A Proof of the Result

Proposition

- The limit

$$
\lim _{s \rightarrow 1^{+}} F(z, s)
$$

exists and is given by

$$
F(z, 1)=e(-z)+\sum_{n=0}^{\infty} b(n) e(n z)
$$

where $b(0)=24$ and

$$
b(n)=2 \pi n^{-\frac{1}{2}} \sum_{c>0} \frac{S(n,-1 ; c)}{c} l_{1}\left(\frac{4 \pi \sqrt{n}}{c}\right), \quad n>0 .
$$

- $J(z)=F(z, 1)-24$.

The Kloosterman sum

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

- $S(a, b ; c)$ is the ordinary Kloosterman sum

$$
S(a, b ; c):=\sum_{\substack{(\bmod c) \\(c, d)=1}} e\left(\frac{a \bar{d}+b d}{c}\right)
$$

where \bar{d} is the multiplicative inverse of $d(\bmod c)$.

The Fourier expansion

Effective Bounds for Traces of Singular Moduli

Ellers and
Kenney

Related Theorems
$F(z, s)$ has a Fourier expansion given by

$$
\begin{aligned}
F(z, s)= & 2 \pi y^{\frac{1}{2}} l_{s-\frac{1}{2}}(2 \pi y) e(-x)+c_{s} y^{1-s} \\
& +4 \pi \sum_{n \neq 0} b(n ; s) y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|n| y) e(n x)
\end{aligned}
$$

where

$$
c_{s}:=\frac{4 \pi^{1+s}}{(2 s-1) \Gamma(s) \zeta(2 s)}
$$

and

$$
b(n ; s):=\sum_{c>0} \frac{S(n,-1 ; c)}{c} \begin{cases}l_{2 s-1}\left(\frac{4 \pi \sqrt{n}}{c}\right) & n>0 \\ J_{2 s-1}\left(\frac{4 \pi \sqrt{|n|}}{c}\right) & n<0 .\end{cases}
$$

The first two terms

Effective
Bounds for
Traces of Singular
Moduli
Ellers and
Kenney

Definitions
Related

Theorems

Zagier

Duke

A Result

$$
\begin{aligned}
F(z, s)= & 2 \pi y^{\frac{1}{2}} I_{s-\frac{1}{2}}(2 \pi y) e(-x)+c_{s} y^{1-s} \\
& +4 \pi \sum_{n \neq 0} b(n ; s) y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|n| y) e(n x)
\end{aligned}
$$

- These are analytic functions on \mathbb{C}.
- We want to show that for $z \in \mathbb{H}$, the sum

$$
B(z, s):=\sum_{n \neq 0} b(n ; s) y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|n| y) e(n x)
$$

converges absolutely for all $s \in \mathbb{R}$ such that $s \geq 1$.

Bounding the Fourier coefficients

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related
Theorems
Zagier

Duke

A Result
Statement of Result
Comparison
A Proof of the Result

Proposition

For $s \in \mathbb{R}$ such that $s \geq 1$,

$$
|b(n ; s)| \leq \begin{cases}C_{1}(s)|n|^{s} & n<0 \\ C_{2}(s) n^{s} e^{4 \pi \sqrt{n}} & n>0\end{cases}
$$

and

$$
\left|K_{s-\frac{1}{2}}(2 \pi|n| y)\right| \leq C_{3}(s) \frac{e^{-2 \pi|n| y}}{\sqrt{|n| y}}
$$

where C_{1}, C_{2}, and C_{3} are explicit constants that depend on s.

Key ideas

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

- The Weil bound:

$$
|S(a, b ; c)| \leq \tau(c)(a, b, c)^{1 / 2} c^{1 / 2}
$$

where τ is the divisor function.

- A careful study of the asymptotics of the I, J, and K Bessel functions.

Bounding the infinite sum

Effective Bounds for Traces of Singular Moduli

Ellers and
Kenney

Using these bounds we can show that for $z \in \mathbb{H}$,

$$
|B(z, s)| \leq \sum_{n \neq 0}\left|b(n ; s) y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|n| y) e(n x)\right|<\infty
$$

for all $s \in \mathbb{R}$ such that $s \geq 1$.

The Fourier expansion of $F(z, 1)$

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related

Theorems

Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result

Reduced Forms

The Poincaré
Series
A Useful
Proposition
Bounding $T_{r_{d}}(J)$

Thus after some manipulation we find that

$$
\begin{aligned}
\lim _{s \rightarrow 1^{+}} F(z, s)=F(z, 1)=e(-z) & +24-e(-\bar{z}) \\
& +2 \pi \sum_{n<0} b(n ; 1)|n|^{-\frac{1}{2}} e(n \bar{z}) \\
& +2 \pi \sum_{n>0} b(n ; 1) n^{-\frac{1}{2}} e(n z) .
\end{aligned}
$$

The principal part

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

Definitions

Related

Theorems
Zagier

Duke

A Result

Statement of

 Result
Comparison

A Proof of the Result

- Let

$$
\phi(z):=F(z, 1)-J(z) .
$$

- Recall:

$$
J(z):=e(-z)+\sum_{n>0} a(n) e(n z) .
$$

- Note that $F(z, 1)$ and $J(z)$ have the same principal part.
- Hence the function $\phi(z)$ is bounded on \mathbb{H}.

The hyperbolic Laplacian operator

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related Theorems

- The hyperbolic Laplacian is

$$
\Delta:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

- Fact: If f is a holomorphic function on \mathbb{H} then $\Delta f(z)=0$.
- Since $J(z)$ is holomorphic on $\mathbb{H}, \Delta J(z)=0$.

$\phi(z)$ is harmonic

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related

Theorems

Zagier

Duke
A Result
Statement of Result

Comparison

A Proof of the Result
Reduced Forms The Poincaré Series
A Useful
Proposition
Bounding $\operatorname{Tr}_{d}(J)$

- It is known that

$$
\Delta F(z, s)=s(s-1) F(z, s)
$$

- So $\Delta F(z, 1)=0$.
- Therefore $\Delta \phi(z)=0$, so $\phi(z)$ is harmonic.

$\phi(z)$ is constant

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

- Fact: A bounded harmonic function on \mathbb{H} is constant.

So $\phi(z)=C$ for some constant C.

- Since

$$
C T(J(z))=0 \text { and } C T(F(z, 1))=24
$$

we have that

$$
\phi(z)=F(z, 1)-J(z)=24
$$

and thus

$$
J(z)=F(z, 1)-24
$$

- This proves the second part of the proposition.

The anti-holomorphic part

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Related

Theorems

Zagier
Duke
A Result
Statement of
Result
Comparison
A Proof of the Result

Reduced Forms
The Poincaré
Series
A Useful
Proposition
Bounding $T_{d}(J)$

$$
\begin{aligned}
F(z, 1)=e(-z) & +24-\boldsymbol{e}(-\overline{\mathbf{z}}) \\
+\mathbf{2} \boldsymbol{\pi} & \sum_{\boldsymbol{n}<\mathbf{0}} \boldsymbol{b}(\boldsymbol{n} ; \mathbf{1})|\boldsymbol{n}|^{-\frac{1}{2}} \boldsymbol{e}(\boldsymbol{n} \overline{\mathbf{z}}) \\
& +2 \pi \sum_{n>0} b(n ; 1) n^{-\frac{1}{2}} e(n z) .
\end{aligned}
$$

The anti-holomorphic part (cont.)

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

- Since $F(z, 1)-24=J(z)$ and $J(z)$ is holomorphic, the anti-holomorphic part of $F(z, 1)$ is zero, hence

$$
F(z, 1)=e(-z)+24+2 \pi \sum_{n>0} b(n ; 1) n^{-\frac{1}{2}} e(n z)
$$

- We can conclude that $b(0)=24$ and

$$
\begin{aligned}
b(n) & =2 \pi b(n ; 1) n^{-\frac{1}{2}} \\
& =2 \pi n^{-\frac{1}{2}} \sum_{c>0} \frac{S(n,-1 ; c)}{c} l_{1}\left(\frac{4 \pi \sqrt{n}}{c}\right), \quad n>0 .
\end{aligned}
$$

Bounding the trace of $J(z)$

Effective Bounds for Traces of Singular Moduli

Ellers and
Kenney

Definitions

Related
Theorems
Zagier

Duke

A Result

Comparison

A Proof of the Result

The trace of $J(z)$ is

$$
\begin{aligned}
\operatorname{Tr}_{d}(J(z)) & =\sum_{i=1}^{h(d)}\left(F\left(\tau_{Q_{i}}, 1\right)-24\right) \\
& =\operatorname{Tr}_{d}(F(z, 1))-24 h(d) \\
& =\sum_{i=1}^{h(d)} e\left(-\tau_{Q_{i}}\right)-24 h(d)+E(d)
\end{aligned}
$$

where

$$
E(d):=\sum_{n=0}^{\infty} b(n) \sum_{i=1}^{h(d)} e\left(n \tau_{Q_{i}}\right) .
$$

The main term

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions

Related

Theorems
Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré
Series
A Useful

- We can write

$$
\sum_{i=1}^{h(d)} e\left(-\tau_{Q_{i}}\right)=\sum_{\substack{Q_{i} \\ \operatorname{Im}\left(\tau_{Q_{i}}\right)>1}} e\left(-\tau_{Q_{i}}\right)+\sum_{\substack{Q_{i} \\ \operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1}} e\left(-\tau_{Q_{i}}\right)
$$

- Note that

$$
\begin{aligned}
\left|\sum_{\substack{Q_{i} \\
\operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1}} e\left(-\tau_{Q_{i}}\right)\right| \leq & \sum_{\substack{Q_{i} \\
\operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1}}\left|e\left(-\tau_{Q_{i}}\right)\right| \\
= & \sum_{\operatorname{Qi}_{i}}\left|e^{-2 \pi i \operatorname{Re}\left(\tau_{Q_{i}}\right)} e^{2 \pi \operatorname{Im}\left(\tau_{Q_{i}}\right)}\right| \\
= & \sum_{\operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1} e^{2 \pi \operatorname{Im}\left(\tau_{Q_{i}}\right)} \leq h(d) e^{2 \pi} \\
& \operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1
\end{aligned}
$$

Bounding $|E(d)|$

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

Definitions

Related

Theorems
Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré

Series

A Useful

Proposition

Bounding $\left.T_{r_{d}}(\lrcorner\right)$

- First,

$$
|E(d)| \leq \sum_{n=0}^{\infty}|b(n)| \sum_{i=1}^{h(d)}\left|e\left(n \tau_{Q_{i}}\right)\right|
$$

- Now,

$$
\begin{aligned}
\sum_{i=1}^{h(d)}\left|e\left(n \tau_{Q_{i}}\right)\right| & =\sum_{i=1}^{h(d)}\left|e^{2 \pi \operatorname{inRe}\left(\tau_{Q_{i}}\right)} e^{-2 \pi n \operatorname{Im}\left(\tau_{Q_{i}}\right)}\right| \\
& =\sum_{i=1}^{h(d)} e^{-2 \pi n \operatorname{Im}\left(\tau_{Q_{i}}\right)}
\end{aligned}
$$

Bounding $|E(d)|$ (cont.)

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related
Theorems
Zagier

Duke

A Result

Statement of

 Result
Comparison

A Proof of the Result
Reduced Forms

- Since $\tau_{Q_{1}}, \ldots, \tau_{Q_{h(d)}}$ lie in the fundamental domain \mathcal{F},

$$
\operatorname{Im}\left(\tau_{Q_{i}}\right) \geq \frac{\sqrt{3}}{2}
$$

for all $1 \leq i \leq h(d)$, and so

$$
e^{-2 \pi n \operatorname{Im}\left(\tau_{Q_{i}}\right)} \leq e^{-\pi n \sqrt{3}}
$$

- Thus

$$
\begin{equation*}
\sum_{i=1}^{h(d)} e^{-2 \pi n \operatorname{Im}\left(\tau_{Q_{i}}\right)} \leq h(d) e^{-\pi n \sqrt{3}} \tag{1}
\end{equation*}
$$

Bounding $|E(d)|$ (cont.)

Effective
Bounds for
Traces of
Singular
Moduli
Ellers and
Kenney

Definitions
Related

Theorems

Zagier
Duke
A Result
Statement of Result
Comparison
A Proof of the Result

- Recall: For $s \in \mathbb{R}$ such that $s \geq 1$,

$$
|b(n ; s)| \leq \begin{cases}C_{1}(s)|n|^{s} & n<0 \\ C_{2}(s) n^{s} e^{4 \pi \sqrt{n}} & n>0\end{cases}
$$

- So, setting $s=1$,

$$
\begin{equation*}
|b(n ; 1)| \leq(105.20) n e^{4 \pi \sqrt{n}}, \quad n>0 . \tag{2}
\end{equation*}
$$

Bounding $|E(d)|$ (cont.)

Effective Bounds for Traces of Singular
Moduli
Ellers and
Kenney

Definitions
Related

Theorems

Zagier

Duke
A Result

- Combining (1) and (2), we get

$$
|E(d)| \leq \sum_{n=0}^{\infty}|b(n)| \sum_{i=1}^{h(d)}\left|e\left(n \tau_{Q_{i}}\right)\right| \leq\left(1.72 \times 10^{6}\right) h(d)
$$

- Combined with our earlier observation that

$$
\sum_{i=1}^{h(d)} e\left(-\tau_{Q_{i}}\right)=\sum_{\substack{Q_{i} \\ \operatorname{Im}\left(\tau_{Q_{i}}\right)>1}} e\left(-\tau_{Q_{i}}\right)+\sum_{\substack{Q_{i} \\ \operatorname{Im}\left(\tau_{Q_{i}}\right) \leq 1}} e\left(-\tau_{Q_{i}}\right)
$$

this completes the proof of the theorem.

Recap

Effective Bounds for Traces of Singular Moduli

Ellers and Kenney

Definitions

Related

Theorems

Zagier

Duke

A Result
Statement of Result
Comparison
A Proof of the Result
Reduced Forms
The Poincaré Series
A Usefut Proposition Bounding $\left.\operatorname{Tr}_{d}(\lrcorner\right)$

Theorem

$$
\operatorname{Tr}_{d}(J)=\sum_{\substack{[Q] \in Q_{d} / L_{2}(\mathbb{Z}) \\ \operatorname{Im}\left(\tau_{Q}\right)>1}} e\left(-\tau_{Q}\right)-24 h(d)+E(d)
$$

where

$$
|E(d)| \leq\left(1.72 \times 10^{6}\right) h(d) .
$$

