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The upper half plane and modular group

Let H denote the complex upper half plane.

Let SL2(Z) =

{(
a b
c d

) ∣∣∣a, b, c , d ∈ Z, ad − bc = 1

}

SL2(Z) acts on H by linear fractional transformations: If

γ =

(
a b
c d

)
∈ SL2(Z) and z ∈ H, then the group action

is defined by

γ(z) =
az + b

cz + d
.
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The J-function

The classical modular j-function is defined as

j(z) := e(−z) + 744 +
∑
n>0

a(n)e(nz), z ∈ H

where e(z) := e2πiz and a(n) ∈ Z is a Fourier coefficient
for which an explicit formula can be found.

Define J(z) := j(z)− 744.

Note that
J(γz) = J(z)

for all γ ∈ SL2(Z) and z ∈ H, and so J is an automorphic
function.
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Binary Quadratic Forms

Let Qd be the set of primitive, positive-definite, integral,
binary quadratic forms

Q(x , y) = [aQ , bQ , cQ ] = aQx
2 + bQxy + cQy

2

with discriminant d = b2
Q − 4aQcQ < 0.

There is a right action of SL2(Z) on Qd given by

Q ◦M(x , y) = Q(αx + βy , γx + δy)

where M =

(
α β
γ δ

)
∈ SL2(Z).
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The Class Number

The quotient Qd/SL2(Z) is finite. Let

h(d) := |Qd/SL2(Z)|

be the class number of d .

Theorem (Siegel)

For all ε > 0 there exists a constant C (ε) > 0 such that

h(d) ≥ C (ε) |d |
1
2

+ε .
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Singular Moduli

We are interested in evaluating the J-function at certain
distinguished algebraic integers.

A CM point is the root of Q(x , 1) in H given by

τQ =
−bQ + i

√
|d |

2aQ
.

The values J(τQ) are algebraic numbers called singular
moduli.
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Traces of singular moduli

We define the trace of singular moduli by:

Trd(J) :=
∑

[Q]∈Qd/SL2(Z)

J(τQ).

The trace is well defined because if [Q1] = [Q2], then
γτQ1 = τQ2 for some γ ∈ SL2(Z), and J is automorphic.
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Zagier’s generating function

Let

gZag (z) := e(−z |d |) +
∑

d≡0,1 (mod 4)

Trd(J)e(z |d |).

A remarkable theorem of Zagier asserts that gZag (z) is a
weakly holomorphic modular form of weight 3/2 for Γ0(4).
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Importance

Zagier’s theorem tells us that using traces of singular
moduli, we can construct a new weakly holomorphic
modular form of a different weight.

A problem of central importance in number theory is to
bound Fourier coefficients of modular forms.

As a consequence of our main theorem, we will give
effective bounds for the Fourier coefficients of gZag (z).
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A Theorem of Duke

Theorem (Duke, 2006)

There is an absolute constant δ > 0 such that

Trd(J) =
∑

[Q]∈Qd/SL2(Z)
Im(τQ)>1

e(−τQ)− 24h(d) +O(|d |
1
2
−δ).
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A Theorem of Duke

Note that O(|d |
1
2−δ)

h(d) → 0 as |d | → ∞ by Siegel’s Theorem.

Thus Duke’s theorem implies that

Trd(J)−
∑

[Q]∈Qd/SL2(Z)
Im(τQ)>1

e(−τQ)

h(d)
→ −24

as |d | → ∞. This confirmed a conjecture of Bruinier,
Jenkins, and Ono.
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Special case of our Main Theorem

Theorem

Trd(J) =
∑

[Q]∈Qd/SL2(Z)
Im(τQ)>1

e(−τQ)− 24h(d) + E (d)

where
|E (d)| ≤ (1.72× 106)h(d).
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Series

A Useful
Proposition

Bounding Trd (J)

15/40

A corollary

Corollary

|Trd(J)| ≤ eπ
√
|d |(1.72× 106)h(d)
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Comparison with Duke’s Theorem

Duke proved that

Trd(J)−
∑

[Q]∈Qd/SL2(Z)
Im(τQ)>1

e(−τQ)

converges by saving a power of d in the error term over
the “trivial” bound h(d)� log(|d |)

√
|d |.

However because of the methods involved in Duke’s proof,
one cannot practically compute the implied constant in his
error term.

Therefore we require a new method for our main theorem.
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Reduced forms

The fundamental domain for SL2(Z) acting on H is the
region

F :=

{
z ∈ C

∣∣ |z | > 1 and − 1

2
≤ Re(z) <

1

2

}
∪
{
z ∈ C

∣∣ − 1

2
≤ Re(z) ≤ 0, |z | = 1

}
.

A form Q is said to be reduced if its CM point lies in F .

Each [Q] ∈ Qd/SL2(Z) contains a unique reduced form.
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Summing over reduced forms

Let Q1, . . . ,Qh(d) be the set of reduced forms representing
the equivalence classes in Qd/SL2(Z).

We can sum over Q1, . . . ,Qh(d) in the trace of J(z):

Trd(J) =

h(d)∑
i=1

J(τQi
).
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The Poincaré series

For s ∈ C with Re(s) > 1 and z ∈ H, define the
Maass-Poincaré series

F (z , s) := 2π
∑

γ∈Γ∞\SL2(Z)

Im(γz)
1
2 Is− 1

2
(2πIm(γz))e(−Re(γz)).

Iν is the I Bessel function of order ν.

And

Γ∞ :=

{
±
(

1 n
0 1

) ∣∣∣∣ n ∈ Z+ ∪ {0}
}

is the subset of SL2(Z) that stabilizes the cusp at infinity.



Effective
Bounds for
Traces of
Singular
Moduli

Ellers and
Kenney

Definitions

Related
Theorems

Zagier

Duke

A Result

Statement of
Result

Comparison

A Proof of the
Result

Reduced Forms

The Poincaré
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Proposition

Proposition

The limit

lim
s→1+

F (z , s)

exists and is given by

F (z , 1) = e(−z) +
∞∑
n=0

b(n)e(nz)

where b(0) = 24 and

b(n) = 2πn−
1
2

∑
c>0

S(n,−1; c)

c
I1

(
4π
√
n

c

)
, n > 0.

J(z) = F (z , 1)− 24.
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The Kloosterman sum

S(a, b; c) is the ordinary Kloosterman sum

S(a, b; c) :=
∑

d (mod c)
(c,d)=1

e

(
ad + bd

c

)

where d is the multiplicative inverse of d (mod c).
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The Fourier expansion

F (z , s) has a Fourier expansion given by

F (z , s) = 2πy
1
2 Is− 1

2
(2πy)e(−x) + csy

1−s

+ 4π
∑
n 6=0

b(n; s)y
1
2Ks− 1

2
(2π |n| y)e(nx)

where

cs :=
4π1+s

(2s − 1)Γ(s)ζ(2s)

and

b(n; s) :=
∑
c>0

S(n,−1; c)

c


I2s−1

(
4π
√
n

c

)
n > 0

J2s−1

(
4π
√
|n|

c

)
n < 0.
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The first two terms

F (z , s) = 2πy
1
2 Is− 1

2
(2πy)e(−x) + csy1−s

+ 4π
∑
n 6=0

b(n; s)y
1
2Ks− 1

2
(2π |n| y)e(nx)

These are analytic functions on C.

We want to show that for z ∈ H, the sum

B(z , s) :=
∑
n 6=0

b(n; s)y
1
2Ks− 1

2
(2π |n| y)e(nx)

converges absolutely for all s ∈ R such that s ≥ 1.
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Bounding the Fourier coefficients

Proposition

For s ∈ R such that s ≥ 1,

|b(n; s)| ≤

{
C1(s) |n|s n < 0

C2(s)nse4π
√
n n > 0

and ∣∣∣Ks− 1
2
(2π |n| y)

∣∣∣ ≤ C3(s)
e−2π|n|y√
|n| y

where C1,C2, and C3 are explicit constants that depend on s.
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Key ideas

The Weil bound:

|S(a, b; c)| ≤ τ(c)(a, b, c)1/2c1/2

where τ is the divisor function.

A careful study of the asymptotics of the I , J, and K
Bessel functions.
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Bounding the infinite sum

Using these bounds we can show that for z ∈ H,

|B(z , s)| ≤
∑
n 6=0

∣∣∣b(n; s)y
1
2Ks− 1

2
(2π |n| y)e(nx)

∣∣∣ <∞
for all s ∈ R such that s ≥ 1.
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The Fourier expansion of F (z , 1)

Thus after some manipulation we find that

lim
s→1+

F (z , s) = F (z , 1) = e(−z) + 24− e(−z)

+ 2π
∑
n<0

b(n; 1) |n|−
1
2 e(nz)

+ 2π
∑
n>0

b(n; 1)n−
1
2 e(nz).
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The principal part

Let
φ(z) := F (z , 1)− J(z).

Recall:
J(z) := e(−z) +

∑
n>0

a(n)e(nz).

Note that F (z , 1) and J(z) have the same principal part.

Hence the function φ(z) is bounded on H.
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The hyperbolic Laplacian operator

The hyperbolic Laplacian is

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Fact: If f is a holomorphic function on H then
∆f (z) = 0.

Since J(z) is holomorphic on H, ∆J(z) = 0.
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φ(z) is harmonic

It is known that

∆F (z , s) = s(s − 1)F (z , s).

So ∆F (z , 1) = 0.

Therefore ∆φ(z) = 0, so φ(z) is harmonic.
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φ(z) is constant

Fact: A bounded harmonic function on H is constant.

So φ(z) = C for some constant C .

Since
CT (J(z)) = 0 and CT (F (z , 1)) = 24

we have that

φ(z) = F (z , 1)− J(z) = 24

and thus

J(z) = F (z , 1)− 24.

This proves the second part of the proposition.



Effective
Bounds for
Traces of
Singular
Moduli

Ellers and
Kenney

Definitions

Related
Theorems

Zagier

Duke

A Result

Statement of
Result

Comparison

A Proof of the
Result

Reduced Forms

The Poincaré
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The anti-holomorphic part

Recall:

F (z , 1) = e(−z) + 24−e(−z)

+2π
∑
n<0

b(n; 1) |n|−
1
2 e(nz)

+ 2π
∑
n>0

b(n; 1)n−
1
2 e(nz).
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The anti-holomorphic part (cont.)

Since F (z , 1)− 24 = J(z) and J(z) is holomorphic, the
anti-holomorphic part of F (z , 1) is zero, hence

F (z , 1) = e(−z) + 24 + 2π
∑
n>0

b(n; 1)n−
1
2 e(nz)

We can conclude that b(0) = 24 and

b(n) = 2πb(n; 1)n−
1
2

= 2πn−
1
2

∑
c>0

S(n,−1; c)

c
I1

(
4π
√
n

c

)
, n > 0.
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Bounding the trace of J(z)

The trace of J(z) is

Trd(J(z)) =

h(d)∑
i=1

(F (τQi
, 1)− 24)

= Trd(F (z , 1))− 24h(d)

=

h(d)∑
i=1

e(−τQi
)− 24h(d) + E (d)

where

E (d) :=
∞∑
n=0

b(n)

h(d)∑
i=1

e(nτQi
).
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The main term

We can write
h(d)∑
i=1

e(−τQi
) =

∑
Qi

Im(τQi
)>1

e(−τQi
) +

∑
Qi

Im(τQi
)≤1

e(−τQi
).

Note that∣∣∣∣ ∑
Qi

Im(τQi
)≤1

e(−τQi
)

∣∣∣∣ ≤ ∑
Qi

Im(τQi
)≤1

|e(−τQi
)|

=
∑
Qi

Im(τQi
)≤1

∣∣∣e−2πiRe(τQi
)e2πIm(τQi

)
∣∣∣

=
∑
Qi

Im(τQi
)≤1

e2πIm(τQi
) ≤ h(d)e2π.
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Bounding |E (d)|

First,

|E (d)| ≤
∞∑
n=0

|b(n)|
h(d)∑
i=1

|e(nτQi
)| .

Now,

h(d)∑
i=1

|e(nτQi
)| =

h(d)∑
i=1

∣∣∣e2πinRe(τQi
)e−2πnIm(τQi

)
∣∣∣

=

h(d)∑
i=1

e−2πnIm(τQi
).
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Bounding |E (d)| (cont.)

Since τQ1 , . . . , τQh(d)
lie in the fundamental domain F ,

Im(τQi
) ≥
√

3

2

for all 1 ≤ i ≤ h(d),and so

e−2πnIm(τQi
) ≤ e−πn

√
3.

Thus

h(d)∑
i=1

e−2πnIm(τQi
) ≤ h(d)e−πn

√
3. (1)
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Bounding |E (d)| (cont.)

Recall: For s ∈ R such that s ≥ 1,

|b(n; s)| ≤

{
C1(s) |n|s n < 0

C2(s)nse4π
√
n n > 0.

So, setting s = 1,

|b(n; 1)| ≤ (105.20)ne4π
√
n, n > 0. (2)
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Bounding |E (d)| (cont.)

Combining (1) and (2), we get

|E (d)| ≤
∞∑
n=0

|b(n)|
h(d)∑
i=1

|e(nτQi
)| ≤ (1.72× 106)h(d).

Combined with our earlier observation that

h(d)∑
i=1

e(−τQi
) =

∑
Qi

Im(τQi
)>1

e(−τQi
) +

∑
Qi

Im(τQi
)≤1

e(−τQi
)

this completes the proof of the theorem.
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Recap

Theorem

Trd(J) =
∑

[Q]∈Qd/SL2(Z)
Im(τQ)>1

e(−τQ)− 24h(d) + E (d)

where
|E (d)| ≤ (1.72× 106)h(d).


